• 제목/요약/키워드: Pyrophosphorylase

검색결과 29건 처리시간 0.02초

Sucrose Synthase, UDP-glucose pyrophosphorylase and ADP-glucose Pyrophosphorylnse in Korea Ginseng Roots

  • Yelena V.Sundukova;Lee, Mi-Ja;Park, Hoon
    • Journal of Ginseng Research
    • /
    • 제24권2호
    • /
    • pp.83-88
    • /
    • 2000
  • 6년생 고려인삼근(Panax ginseng C.A. Meyer) 중의 Sucrose synthase, UDP-glucose pyrophosphorylase 및 ADP-glucose pyrophosphorylase의 활성을 생육 시기별로 조사한 결과, Sucrose synthase 와 ADP-glucose pyrophosphorylase는 뿌리저장활성 지표로서 adaptive enzyme의 특성을 나타내는 반면, UDP-glucose pyrophosphorylase는 maintenance enzyme으로서 존재하였다. 평균기온이 24。C 이상일 때 전분합성이 저하되고 중심부의 산소소비량이 급격히 증가되었다.

  • PDF

Changes in the Expression of ADP-Glucose Pyrophosphorylase Genes During Fruit Ripening in Strawberry

  • Park, Jeong-Il;Kim, In-Jung
    • Food Science and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.343-348
    • /
    • 2007
  • Starch contents play important roles in determining the fruit quality. Stawberry accumulates starch in the early stages and then mobilized into soluble sugars during fruit ripening. To date the molecular studies on the ADP-glucose pyrophosphorylase (AGPase), a key enzyme of starch biosynthesis, were not reported. cDNAs encoding small (FagpS) and large (FagpL1 and FaspL2) AGPase subunits were isolated from strawberry (Fragaria ${\times}$ ananassa Duch. cv. Niyobou). Both FagpS and FagpL1 cDNAs have open reading frames deriving 55-58 kDa polypeptides, where FagpL2 contains a partial fragment. Sequence analyses showed that FagpS has a glutamate-threonine-cysteine-leucine (ETCL) instead of a glutamine-threonine-cysteine-leucine (QTCL) motif found in all the dicot plants except for Citrus. In fruits, FagpS and FagpL1 were expressed in all stages with a little change in the amounts of transcripts. In the case of FagpL2, we were not able to detect any signal from all stages of fruit development and all tissues except for very a weak signal from the leaf. The results indicate that FagpL1 and FagpL2 show ubiquitous and leaf-specific expression patterns, respectively. The studies suggest that the starch contents in strawberry might be controlled by the expression of AGPase gene at both the transcriptional and post-transcriptional levels during fruit development.

Isolation and Nucleotide Sequence Analysis of ADP-glucose Pyrophosphorylase gene from Chinese cabbage (Brassica rapa L.)

  • Kim, In-Jung;Park, Jee-Young;Lee, Young-Wook;Chung, Won-Il;Lim, Yong-Pyo
    • Journal of Plant Biotechnology
    • /
    • 제4권2호
    • /
    • pp.59-65
    • /
    • 2002
  • ADP-glucose pyrophosphorylase (AGPase) catalyzes the key regulatory step in starch biosynthesis. Two cDNA clones encoding AGPase subunits were isolated from the leaf cDNA library of Chinese cabbage (Brassica campestris L. spp. pekinensis). One was designated as BCAGPS for the small subunit and the other as BCAGPL for the large subunit. Both cDNAs have uninterrupted open reading frames deriving 57 kDa and 63 kDa polypeptides for BCAGPS and BCAGPL, respectively, which showed significant similarity to those of other dicot plants. Also, However, the deduced amino acid sequence of BCAGPL has a unique feature. That is, it contains two regions (Rl and R2) lacking in all other plant enzymes. This is the first report of BCAGPL containing Rl and R2 among plant large subunits as well as small subunits. From the genomic Southern analysis and BAC library screening, we inferred the genomic status of BCAGPS and BCAGPL gene.

Impact of low temperature during ripening stage, amylose content and activities of starch biosynthesis in rice endosperm

  • Baek, Jung-Sun;Hwang, Woon-Ha;Jeong, Han-Yong;An, Sung-Hyun;Jeong, Jae-Heok;Lee, Hyeon-Seok;Yoon, Jong-Tak;Choi, Kyung-Jin;Lee, Gun-Hwi
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.229-229
    • /
    • 2017
  • This research study was conducted to analyze the characteristics of different rice cultivars in abnormal temperature conditions (low temperature) for ripening period abnormalities, and to investigate the physiological causes behind the abnormalities. Four Korean high quality japonica-type rice cultivars, Jinbu (JB), Junamjosaeng (JJ), Geumyoung (GY), Hwawang (HW) were used in the experiment. The following day after flowering, they were then moved into two phytotrons under natural daylight with 65% RH but controlled at different temperatures - one at $19/29^{\circ}C$ (night/day) and the other at $13/23^{\circ}C$ as the low - temperature study on ripening. For the cultivars at $13/23^{\circ}C$ (low temperature study), JB and JJ had a ripening rate of 93% which is similar to the ripening rates of cultivars at $19/29^{\circ}C$ at 45 days after heading (DAH). In contrast, GY and HW recorded lower ripening rates of 86% and 57% respectively. However, when the cultivars at $13/23^{\circ}C$ were harvested at 61 DAH (when the accumulated temperature reached $1100^{\circ}C$), the difference in ripening rates compared to the 4 cultivars of $19/29^{\circ}C$ harvested at 45 DAH was not obvious (JB 94%, JJ 97%, GY 97%, HW 88%). Starch content showed little difference among the 4 cultivars at different temperature conditions while amylose content was higher for cultivars at $13/23^{\circ}C$ compared to those at $19/29^{\circ}C$. In addition, the enzyme activities of starch biosynthesis were about 5~10 days slower in cultivars at $13/23^{\circ}C$ compared to cultivars at $19/29^{\circ}C$. The grain-filling rate showed highly significant correlations with the enzyme activities of Sucrose synthase ($R^2=0.70^{***}$), ADP glucose pyrophosphorylase ($R^2=0.63^{***}$), UDP glucose pyrophosphorylase ($R^2=0.36^{***}$), Starch synthase ($R^2=0.51^{***}$), and Starch branching enzyme ($R^2=0.59^{***}$). Among the enzymes, Sucrose synthase activity had the highest correlation coefficient with grain-filling rate. In conclusion, the activity of enzymes such as Sucrose synthase, UDP glucose pyrophosphorylase, ADP glucose pyrophosphorylase, Starch synthase, Starch branching enzyme in starch biosynthesis is proven to be highly related to the grain filling process. Notably, the decrease in the activity of Sucrose synthase and Starch branching enzyme and the late increase in ADP glucose pyrophosphorylase activity at low temperature in the ripening stage are considered to be disadvantageous as they delay ripening and increased amylose content.

  • PDF

Cloning and Characterization of GDP-mannose Pyrophosphorylase from Solanum Tuberosum L.

  • Hyun, Tae-Kyung;Lim, Jung-Dae;Kim, Jae-Kwang;Seong, Eun-Soo;Lee, Jae-Geun;Yoon, Byeong-Sung;Kim, Myong-Jo;Cho, Dong-Ha;Yu, Chang-Yeon
    • 한국약용작물학회지
    • /
    • 제13권5호
    • /
    • pp.276-283
    • /
    • 2005
  • Ascorbic acid is a great antioxidant and helps protect the body against pollutants. GDP-mannose pyrophosphorylase (GMPase) is a key enzyme in manufacturing GDP-mannose, a glycosyl donor for ascorbate and cell wall biosynthesis as well as for protein glycosylation. In this study, we described molecular cloning of a full-length cDNA from Potato (Solanum tuberosum L. cv. Jasim), using tuber. The cDNA isolated encoded a GDP-mannose pyrophosphrylase. The nucleotide sequence of pGMPC showed about 95%, 89% and 80% homology with S. tuberosum (AF022716), N. tabacum (AB066279) and A. thaliana (AF076484) cDNAs clone known as GMPase, respectively. We detected the expression of GMPase using RT-PCR. The highest expression of GMPase was found in stems, and the largest amount of ascorbic acid was also presented in stems. In contrast, the leaf showed minimal level of GMPase transcript and ascorbic acid content. We propose that GMPase expression patterns were similar to the changes of ascorbic acid content in the leaves treated with diverse stresses.

Duplex PCR을 이용한 국내 미승인 유전자변형 감자(EH92-527-1)의 검사법 개발 (Development of Detection Method of Unapproved Genetically Modified Potato (EH92-527-1) in Korea using Duplex Polymerase Chain Reaction)

  • 유명렬;김재환;예미지;김해영
    • 한국식품과학회지
    • /
    • 제45권2호
    • /
    • pp.156-160
    • /
    • 2013
  • 우리나라에서 미승인 품목인 유전자변형 감자 EH92-527-1를 검출하기 위한 duplex PCR 검사법이 개발되었다. 감자의 내재유전자로 UDP-glucose pyrophosphorylase (UGP)가 선별되었고, 14개 다른 작물을 이용하여 특이성이 확인되었다. 유전자변형 감자에 삽입된 T-DNA 영역과 감자 게놈 사이의 연결 부위를 증폭하도록 프라이머 EH92-F/R 쌍이 제작되었고, 몇 개의 다른 유전자 변형 작물을 이용하여 특이성이 확인되었다. 서론에서 언급한 바와 같이 BASF사에서 각 개발된 유전자변형 감자 EH92-527-1과 BPS-A1020-5가 GBSS 유전자를 동일하게 포함하고 있으나 본 연구에서 개발한 검사법은 event-specific primers를 이용하였기 때문에 유전자변형 감자 EH92-527-1에만 특이성을 나타낸다. 이와 같이 개발된 duplex PCR 검사법의 검정한계치는 약 0.05%이다. 이러한 duplex PCR 검사법이 우리나라에 미승인 유전자변형 감자의 모니터링에 유용하게 사용될 것으로 판단한다.

Cloning, Expression, and Characterization of UDP-glucose Pyrophosphorylase from Sphingomonas chungbukensis DJ77

  • Yoon, Moon-Young;Lee, Kyoung-Jin;Park, Hea-Chul;Park, Sung-Ha;Kim, Sang-Gon;Kim, Sung-Kun;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권6호
    • /
    • pp.1360-1364
    • /
    • 2009
  • The bacterium Sphingomonas chungbukensis DJ77 produces the extracellular polysaccharide gellan in high yield. Gellan produced by this bacterium is widely used as a gelling agent, and the enzyme UDP-glucose pyrophosphorylase (UGP) is thought to play a key role in the gellan biosynthetic pathway. The UGP gene has been successfully cloned and over-expressed in E. coli. The expressed enzyme was purified with a molecular weight of approximately 32 kDa, as determined by a SDS-polyacrylamide gel, but the enzyme appears as ca. 63 kDa on a native gel, suggesting that the enzyme is present in a homodimer. Kinetic analysis of UDP-glucose for UGP indicates $K_m$ = 1.14 mM and $V_{max}$ = 10.09 mM/min/mg at pH 8.0, which was determined to be the optimal pH for UGP catalytic activity. Amino acid sequence alignment against other bacteria suggests that the UGP contains two conserved domains: An activator binding site and a glucose-1-phosphate binding site. Site-directed mutagenesis of Lys194, located within the glucose-1-phosphate binding site, indicates that substitution of the charge-reversible residue Asp for Lys194 dramatically impairs the UGP activity, supporting the hypothesis that Lys194 plays a critical role in the catalysis.

콩 품종의 생육특성 및 생육단계별 ADP-Glucose Pyrophosphorylase의 활성변화 비교 (Comparison of Agronomic Characteristics and Activity Variation of ADP-Glucose Pyrophosphorylase at Different Growth Stages in Soybean Cultivars)

  • 김영진;이시명;조상균;오영진;김학신
    • 한국작물학회지
    • /
    • 제55권2호
    • /
    • pp.139-143
    • /
    • 2010
  • 콩의 생산성을 높이는데 중요한 역할을 하는 효소의 활성변화와 종실 수량과의 관련성을 탐색하기 위해 등숙관련효소인 ADP-glucose pyrophosphorylase(AGP)의 활성변화를 콩 품종별로 등숙기간에 따라 조사한 결과를 요약하면 다음과 같다. 1. 풍산나물콩은 협수 및 잎수가 131개 및 102개로 가장 많았으며, 100립중은 10.4g으로 가장 낮았으나 수량은 275kg/10a으로 가장 높아 물질생산 및 건물축적 효율이 우수한 것으로 나타났는데, 개화시기$(R_1,\;R_2)$에 AGP의 활성도 가장 높은 경향이었다. 2. 품종별 $CO_2$ 동화량은 풍산나물콩이 $20.96{\mu}mol\;m^{-2}s^{-1}$로 가장 많았으며 검정콩1호는 $12.54{\mu}mol\;m^{-2}s^{-1}$로 가장 적었다. 3. 단파흑은 개체당 잎면적이 $3,968cm^2$로 가장 많고 100립중도 30.5g으로 가장 높은 반면 수량은 149kg/10a으로 가장 낮아 건물축적 효율이 가장 낮았으며, 생육단계별 AGP활성도 가장 낮은 수치를 나타냈다. 4. AGP의 small subunit은 60KD의 single band를 나타냈는데 개화기 이후 AGP의 활성변화와 일치하는 경향을 보였다.