• Title/Summary/Keyword: Pyrolytic Oil

Search Result 31, Processing Time 0.02 seconds

Study on the Liquefaction Characteristics of ABS Resin in a Low-Temperature Pyrolysis (ABS 수지의 저온 열분해에 의한 액화특성 연구)

  • Choi, Hong Jun;Jeong, Sang Mun;Lee, Bong-Hee
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.417-422
    • /
    • 2011
  • The low temperature pyrolysis of ABS resin has been carried out in a batch reactor under the atmospheric pressure. The effect of the reaction temperature on the yield of pyrolytic oils has been determined in the present study. The oil products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of Ministry of Knowledge Economy. The conversion reaches 80% after 60 min at $500^{\circ}C$ in the pyrolysis of ABS resin. The amount of the final product was ranked as gas heavy oil > gasoline > gas oil > kerosen based on the yield. The yields of heavy oil and gas oil increase with an increase in the reaction time and temperature.

Pollution of Polycyclic Aromatic Hydrocarbons (PAHs) in Seawater and Marine Sediments from Anmyundo Coastal Area after Oil Spill (유류사고 이후 안면도 연안 해수 및 퇴적물의 다환방향족탄화수소(PAHs) 오염에 관한 연구)

  • Lee, Wan-Seok;Park, Seung-Yoon;Kim, Pyoung-Joong;Jeon, Sang-Baeck;An, Kyoung-Ho;Choi, Yong-Seok
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1421-1430
    • /
    • 2010
  • Polycyclic aromatic hydrocarbons (PAHs) were investigated in seawater and marine sediment from Anmyundo coastal area after oil spill. The concentrations of total PAHs in surface and bottom of seawater at August were 31.1 to 142.6 ng/L and 5.9 to 50.9 ng/L in August and November, respectively. The concentrations of PAHs in sediment were 21.0 to 102.9 ng/g D.W. and 32.3 to 57.4 ng/g D.W. in August and November, respectively. PAHs concentrations in seawater and sediment in August were higher than those in November about 2.5 and 1.4 times, respectively. Diagnostic ratio (PhA/AnT and FluA/Pyr) were investigated to identify source of PAHs in seawater and sediment. The PAHs in seawater originated from pyrolytic source and those in sediment originated from pyrolytic and petrogenic source. The glass, wood and coal origin was higher than petroleum origin on the combustion origin of PAHs in seawater and sediment. The seawater of Anmyundo costal area recovered from oil spill, but the sediments of that were weakly influenced by oil spill until now. Because this area is developed many fishing grounds, demanded Long Term Environmental Monitoring Program (LTEMP). The concentrations of PAHs on depth of sediments were investigated at station 8 and 10. The concentrations of PAHs were decreased with increasing depth.

Decomposition Characteristics of Raw Rubber and Tire by Thermal Degradation Process (열분해 공정을 이용한 원료고무와 타이어의 분해 특성)

  • Kim, Won-Il;Kim, Hyung-Jin;Jung, Soo-Kyung;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1052-1060
    • /
    • 1999
  • Tire and raw material of tire, i.e., SBR were degraded using pyrolysis process. The yield of pyrolytic oil was increased and that of gas was decreased with increase of operating temperature in pyrolysis. And the yield of pyrolytic oil was increased and that of gas and char was decreased with increase of heating rate. The maximum oil yields of SBR and tire were 86% and 55% each at $700^{\circ}C$ with a heating rate of $20^{\circ}C/min$. The number average molecular weight ranges of SBR and tire were 740~2486, 740~1719, and the calorific value of SBR and tire was 39~40 kJ/g. The oil components were consisted of mostly 50 aromatic compounds. The particle size was decreased and the surface area was increased with increase of operating temperature, and the BET surface area was $47{\sim}63m^2/g$. The optimum condition of pyrolysis was the temperature of $700^{\circ}C$ with heating rate of $20^{\circ}C$, and the reactor was continuously purged with inert gas to sweep the evolved gases from the reaction zone.

  • PDF

Development on Integrated Pyrolysis Cogeneration System for Waste Tire Recycling Treatment (폐타이어 재활용 처리를 위한 열분해 열병합 복합공정기술개발)

  • Kim, Seong-Yeon;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1990-1995
    • /
    • 2008
  • The thermochemical recycling of waste tires by pyrolysis is studied to recover the value added three by-products; a pyrolytic carbon black, a pyrolytic oil, and a non-condensable gas. The exhausted energy from pyrolysis of waste tires is converted for electricity power and process steam in cogeneration system. The characteristics of the pyrolysis recovered by-products as alternative energy resource are investigated with the design of a demonstration and a commercialization plant including cogeneration system, as called integrated pyrolysis cogeneration system.

  • PDF

Analysis of Environmental Process for Commercial Rubbers using Thermal Degradation (열분해를 이용한 범용고무의 환경친화적 처리공정 해석)

  • Kim, Won-Il;Lee, Seung-Bum;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.35 no.4
    • /
    • pp.272-280
    • /
    • 2000
  • The experimental kinetics was analyzed for commercial rubbers such as NR, IR, BR, SBR 1500, and SBR 1700. Kinetic analysis for the commercial rubbers was performed using a thermogravimetric method, which the activation energies of NR obtained by Kissinger, Friedman, ana Ozawa's method were 195.0, 198.3, and 186.3 kJ/mol, respectively. whereas that of SBR 1500 were 246.4, 247.5, and 254.8 kJ/mol, respectively. It was shown that the yield of pyrolytic oil was generally increased with increasing the final temperature. Considering the effect of heating rate. it was found that the yield of pyrolytic oil was not consistent for each sample. The number average molecular weight of pyrolitic oil of SBR 1500 was in the range of 740-2486. The calorific value of SBR 1500 was 39-40 kJ/g, and it might be a considerable energy potential although it was lower than the conventional fuel such as kerosene, diesel, light fuel, and heavy fuel.

  • PDF

Liquefaction Characteristics of ABS-polyethylene Mixture by a Low-Temperature Pyrolysis (ABS-Polyethylene 혼합물의 저온 열분해 특성평가)

  • Choi, Hong-Jun;Jeong, Sang Mun;Lee, Bong-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.223-228
    • /
    • 2012
  • The low-temperature pyrolysis of ABS, polyethylene (PE) and an ABS-polyethylene (ABS-PE) mixture was conducted in a batch reactor at $450^{\circ}C$. The conversion and the product yield were measured as a function of the reaction time with a variation of the mixture composition. The oil products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of the Ministry of Knowledge Economy. The pyrolysis conversion increases with an increase in the content of PE. The yield of the pyrolytic products was ranked as heavy oil>gas>gasoline>gas oil>kerosene as the content of PE in the mixture increases.

Fundamental Pyrolysis Studies with Molten Metal Fluidized Bed System (Molten metal 유동층을 이용한 열분해 기초 실험)

  • Moon, Jihong;Jeon, Suji;Hwang, Jungho;Bang, Byungryeul;Lee, Uendo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.161-164
    • /
    • 2014
  • The feasibility of a molten metal as a bed material of a pyrolysis system was investigated. The molten metal has various advantages such as high thermal conductivity, wide operating range and low viscosity. Tin was selected since its physical characteristics are suitable for the purpose. As a results, it was found that pyrolytic oil yield and reaction rate were significantly enhanced with the molten Tin. In addition, oxygen component of the product oil was decreased due to Tin oxidation.

  • PDF

Variation in the Residual Oils in the Culture Grounds on the Taean Coast, Korea after the Hebei Spirit Oil Spill (Hebei Spirit호 유류유출 사고 이후 태안 양식어장에서 잔존유류의 농도 변화)

  • Kim, Hyung-Chul;Lee, Wan-Seok;Hwang, Un-Ki;Choi, Yong-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.6
    • /
    • pp.705-714
    • /
    • 2010
  • The residual oil concentrations in seawater and sediments were investigated along the Taean coast of Korea, following the Hebei Spirit oil spill, which occurred on 7 December 2007. The oil concentration in seawater ranged from 0.059 to $0.866\;{\mu}g/L$ for the tidal flat culture grounds and from 0.016 to $0.943\;{\mu}g/L$ in the fish cage areas in 2008. These were dominated by the seawater temperature relationship. Polycyclic aromatic hydrocarbons (PAHs) in sediments were also analyzed and the concentrations ranged from 3.4 to 509.7 ng/g dry weight. The average PAH level was higher in seawater from the Sinduri area than the Padori area, while the average PAH level in sediments was higher in Padori. The diagnostic ratio of PAHs was investigated to determine the origins of the PAHs. The PAHs in the Seongam area, which was not affected by the oil spill, are of pyrolytic origin, while the PAHs in Padori and Sinduri were of petrogenic origin. The residual oils in the areas affected by the oil spill tended to decrease over time, except in summer. The oils in pore water remained 6- to 16-fold higher, as compared to the seawater overlying the tidal flat, implying that residual oils will continue to influence the affected region for the foreseeable future.

Influence of Reaction Temperature on the Pyrolytic Product of Rice Straw by Fast Pyrolysis using a Fluidized Bed (볏짚의 급속 열분해 생성물에 대한 반응온도의 영향)

  • Kang, Bo-Sung;Park, Young-Kwon;Kim, Joo-Sik
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.47-58
    • /
    • 2005
  • Rice straw is one of the main renewable energy sources in Korea, and bio-oil is produced from rice straw with a lab. scale plant equipped mainly with a fluidized bed and a char removal system. We investigated how the reaction temperature affected the production of bio-oil and the efficiency of a char removal system. To elucidate how the temperature depended on the production of bio-oil, experiment were conducted between $450^{\circ}C\;and\;600^{\circ}C$ with a feed rate of about 300g/h. The mass balance was established in each experiment, and the produced gas and oil were analyzed with the aid of GCs and a GC-MS system. The char removal system is composed of a cyclone and a hot filter. In the experiments, we observed that the optimum reaction temperature range for the production of bio-oil is between $450^{\circ}C\;and\;500^{\circ}C$.

  • PDF

Liquefaction Characteristics of Polypropylene-Polystyrene Mixture by Pyrolysis at Low Temperature (Polypropylene-Polystyrene 혼합물의 저온 열분해에 의한 액화특성)

  • Cho, Sung-Hyun;Kim, Chi-Hoi;Kim, Su-Ho;Lee, Bong-Hee
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2010
  • The low temperature pyrolysis of polypropylene (PP), polystyrene (PS) and polypropylene-polystyrene (PP-PS) mixture in a batch reactor at the atmospheric pressure and $450^{\circ}C$ was conducted to investigate the synergy effect of PP-PS mixture on the yield of pyrolytic oil. The pyrolysis time was varied from 20 to 80 mins. The products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of Ministry of Knowledge Economy. The analysis of the product oils by GC/MS(Gas chromatography/Mass spectrometry) showed that new components were not detected by mixing of PP and PS. There was no synergy effect according to the mixing of PP and PS. Conversions and yields of PP-PS mixtures were linearly dependent on the mixing ratio of samples except for heavy oil yields. Heavy oil yields showed almost constant regardless of the mixing ratio.