• Title/Summary/Keyword: Pyrolysis-oil

Search Result 250, Processing Time 0.02 seconds

Product Distribution Characteristics of High-Impact Polystyrene Depolymerization by Pyrolysis (열분해에 의한 내충격 폴리스티렌 해중합 생성물의 분포 특성)

  • Lee, Bong-Hee;Yu, Hong-Jeong;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.64-68
    • /
    • 2005
  • To recycle collected high-impact polystyrene (HIPS) wastes as liquid fuel, depolymerization characteristics of HIPS by pyrolysis was studied. The effects of temperature and time on the pyrolysis of HIPS were investigated. The depolymerization temperature and activation energy of HIPS pyrolysis increased with increasing heating rate. In general, conversion and liquid yield gradually increased with pyrolysis temperature and pyrolysis time. Each liquid product formed during pyrolysis was classified into gasoline, kerosene, light oil and heavy oil according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. As a result, the amount of liquid products produced during HIPS pyrolysis was in the order of gasoline》heavy oil〉kerosene〉light oil. Especially 51${\pm}$6 wt% of HIPS treated was obtained as gasoline.

A Study on Catalytic Pyrolysis of Polypropylene with Mn/sand (Mn/sand 촉매를 활용한 폴리프로필렌 촉매 열분해 연구)

  • Soo Hyun Kim;Seung Hun Baek;Roosse Lee;Sang Jun Park;Jung Min Sohn
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.185-192
    • /
    • 2023
  • This study was conducted to obtain basic process simulation data before conducting pyrolysis experiments for the development of a thermochemical conversion system by recirculation of heat carrier and gases thereby. In this study, polypropylene (PP) was used as a pyrolysis sample material as an alternative to waste plastics, and fluid sand was used as a heat transfer medium in the system. Manganese (Mn) was chosen as the catalyst for the pyrolysis experiment, and the catalyst pyrolysis was performed by impregnating it in the sand. The basic properties of PP were analyzed using a thermogravimetric analyzer (TGA), and liquid oil was generated through catalytic pyrolysis under a nitrogen atmosphere at 600℃. The carbon number distribution of the generated liquid oil was confirmed by GC/MS analysis. In this study, the effects of the presence and the amount of Mn loading on the yield of liquid oil and the distribution of hydrocarbons in the oil were investigated. When Mn/sand was used, the residue decreased and the oil yield increased compared to pyrolysis using sand alone. In addition, as the Mn loading increased, the ratio of C6~C9 range gasoline in the liquid oil gradually increased, and the distribution of diesel and heavy oil with more carbon atoms than C10 in the oil decreased. In conclusion, it was found that using Mn as a catalyst and changing the amount of Mn could increase the yield of liquid oil and increase the gasoline ratio in the product.

Emulsification of the Mixture of Catalytic Pyrolysis Oil Obtained under Methane and Nitrogen Environment in Diesel Using Span 80 and Atlox 4916 as Surfactants

  • Farooq, Abid;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.357-360
    • /
    • 2021
  • Emulsions were prepared using a mixture of bio-oil obtained from the pyrolysis of sawdust in an N2 environment and Quercus mongolica in a CH4 environment for both non-catalytic and catalytic cases. Both prepared emulsions were examined by measuring the physical stability and Fourier transform infrared spectroscopy. The emulsion with HLB 5.8 (Span 80 and Atlox 4916) for the ratio of bio-oil (B-oil and C-oil): surfactant: diesel = 10% : 3% : 87% showed stability for 15 days. Combining oils produced in N2 and CH4 environments could be a potential solution for generating high-quality emulsions with a high heating value.

Pyrolysis Characteristics of Waste Ship Lubricating Oil using Waste Catalyst in Isothermal Tubular Type Pyrolysis Reactor (등온 열분해 반응기에서 폐촉매를 이용한 선박용 폐윤활유의 열분해반응 특성 연구)

  • Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.511-515
    • /
    • 2007
  • The yield of oil was rapidly increased at $440^{\circ}C$ compared to $400^{\circ}C$ and $420^{\circ}C$ when the isothermal pyrolysis of waste ship lubricating oil was carried out in tubular type reactor, and pyrolysis was almost finished within 30 min. The yield of gas was decreased depending on the reaction temperature in which that of solid was not much changed. Pyrolysis experiments of waste ship lubricating oil were carried out with used ZSM-5 produced from a petrochemical process. The yield of gas was highly increased in the case of used ZSM-5 and fresh ZSM-5 compared to the case without catalyst. The produced oil and gas were almost constant for fresh ZSM-5 and used ZSM-5 at the same reaction temperature. In the reaction temperature $400{\sim}440^{\circ}C$, the selectivity of $C_5-C_{11}$ was two times higher with fresh ZSM-5 and used ZSM-5 than the case without catalyst.

Study on Oil Production from Pyrolysis of Mixed Plastic Waste Using Multidimensional Chromatography (Multidimensional Chromatography/Mass Spectrometry를 이용한 혼합 폐플라스틱의 열분해 오일 특성 평가에 관한 연구)

  • 김석완
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.375-382
    • /
    • 2002
  • The total hydrocarbon distribution of oil products obtained from the pyrolysis of four kinds of mixtures of polyethylene-polystyrene waste has been studied by multidimensional chromatography(high performance liquid chromatography followed by capillary gas chromatography)/mass spectrometry. Saturated, unsaturated and aromatic hydrocarbons in oil products were selectively pre-separated according to structural groups by HPLC and the weight fraction of each group was estimated by analysis of each component using GC-FID response factors. The hydrocarbon distribution of aliphatic fraction consists of $C_{5}$ to $C_{25}$ saturated and unsaturated hydrocarbons. And that of aromatics fraction consists of benzene, toluene, xylene, styrene, propenyl benzene, naphthalene, and some of derivatives. Pyrolysis temperature did not affect the ratio of total weight fraction of aliphatic over aromatic hydrocarbon distribution in case of PS only and PE-PS mixtures (1:1 and 1:4 wt. ratio) as a feed while affected the ratio of total wt. fraction in case of PE only. The optimal temperature for the maximum oil production was $600^{\circ}C$ for pyrolysis of PS and 1:1 and 1:4 mixtures of PE and PS. The optimal condition for aromatic recovery was $600^{\circ}C$ with 1:1 mixture of PE and PS. In this condition, aromatic was produced up to 90% of total oil product. The maximum yield of toluene, xylene, styrene, and propenyl benzene were 8.6, 8.9, 51.0 and 7.4% of feed for pyrolysis PS at $700^{\circ}C$, respectively. However, only 1.3% naphthalene was recovered at $700^{\circ}C$ with 1:1 PE:PS(by wt.).

Pyrolysis oil refining by Fly-ash absorption (Fly-ash 흡착기법을 이용한 열분해유 정제)

  • Im, EunJung;Kim, SungHyun;Chun, ByungHee;SunWoo, Hwan;Jeong, IckCheol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.222-222
    • /
    • 2011
  • Plastic product is increasing by the growth of its demand and most of refused plastics are incinerated or reclaimed. However, the refused plastic is not easily decomposed and has the environmental problem with its various toxic gas in case of incineration. Therefore, many countries such as USA, Japan, Germany and other developed industrial countries as well as Korea are interested in studying the recyclable resource of refused plastic. The macromolecular waste pyrolysis has the advantage of collecting of raw materials in high price and can at least get fuel gas or oil with high heat capacity. It also discharges low waste gas and low toxic gas including SOx, NOx and HCl heavy metals. However, pyrolyzed oil includes enough excess unsaturated hydrocarbons to form tar, which can cause the nozzle of engines to plug when pyrolyzed oil is used as fuel. Activated carbon was proven to have prominent adsorption capability among the other adsorbents that were mainly composed of carbon. This study examined the possibility of application in activated charcoal of its solid formation by analysing the feature of pyrolysis which is one of the chemical recycling methods and getting chemical analysis of the product and activated energy. Analyze the element of the oil produced by pyrolysis using GC-MS. The experiment of tar adsorption using fly-ash showed that fly-ash improved the optical intensity of pyrolyzed oil and decreased oxygen compounds in the pyrolyzed oil.

  • PDF

Study on the Liquefaction Characteristics of ABS Resin in a Low-Temperature Pyrolysis (ABS 수지의 저온 열분해에 의한 액화특성 연구)

  • Choi, Hong Jun;Jeong, Sang Mun;Lee, Bong-Hee
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.417-422
    • /
    • 2011
  • The low temperature pyrolysis of ABS resin has been carried out in a batch reactor under the atmospheric pressure. The effect of the reaction temperature on the yield of pyrolytic oils has been determined in the present study. The oil products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of Ministry of Knowledge Economy. The conversion reaches 80% after 60 min at $500^{\circ}C$ in the pyrolysis of ABS resin. The amount of the final product was ranked as gas heavy oil > gasoline > gas oil > kerosen based on the yield. The yields of heavy oil and gas oil increase with an increase in the reaction time and temperature.

Characteristics of Pyrolysis Oils from Saccharina japonica in an Auger Reactor (Auger 반응기에서 제조한 다시마 유래 열분해오일의 특성)

  • Choi, Jae-Wook;Son, Deokwon;Suh, Dong Jin;Kim, Hwayong;Lee, Youn-Woo
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.70-76
    • /
    • 2018
  • Pyrolysis of Saccharina japonica in an Auger reactor was conducted by varying the temperature and the auger speed and then physicochemical properties of the S. japonica-derived pyrolysis oil were analyzed. The maximum yield of S. japonica-derived pyrolysis oil (32 wt%) was obtained at a pyrolysis temperature of $412^{\circ}C$ and an auger speed of 20 rpm. Due to low carbon content and high oxygen content in the pyrolysis oil, the higher heating value of S. japonica-derived pyrolysis oil was $23.6MJ\;kg^{-1}$, which was about 60% that of conventional hydrocarbon fuels. By GC/MS analysis, 1,4-Anhydro-d-galactitol, dianhydromannitol, 1-hydroxy 2-propanone and isosorbide were identified as the main chemical compounds of S. japonica-derived pyrolysis oil. The bio-char has low higher heating value ($13.0MJ\;kg^{-1}$) due to low carbon content and high oxygen content and contains a large amount of inorganic components and sulfur.

Study on the Pyrolysis Kinetics of Deasphalted Oil Using Thermogravimetric Analysis (열중량 분석법을 이용한 Deasphalted Oil의 열분해 특성 분석)

  • Shin, Sang Cheol;Lee, Jung Moo;Lee, Ki Bong;Jeon, Sang Goo;Na, Jeong Geol;Nho, Nam Sun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.391-397
    • /
    • 2012
  • The depletion of conventional oil reserves and the increasing energy need in developing countries such as China and India result in exceeding oil demand over supply. As a solution of the problem, the efficient utilization of heavy oil has been receiving more and more interest. In order to utilize heavy oil, upgrading processes are required. Among the upgrading processes, thermal decomposition is thought to be relatively simple and economical. In this study, to understand basic characteristics of thermal decomposition of heavy oil, we conducted pyrolysis experiments of deasphalted oil (DAO) produced by a solvent deasphalting process. DAO is a mixture of many components and consists mainly of materials of carbon number 20~40. For the comparison with results of DAO pyrolysis, additional pyrolysis experiments with single materials of carbon number 30 ($C_{30}H_{62}$, $C_{30}H_{58}O_4S$, $C_{30}H_{63}O_3P$) were conducted. Pyrolysis experiments were carried out non-isothermally with variation of heating rate (10, 50, $100^{\circ}C$/min) in a thermogravimetric analyzer. Average pyrolysis activation energy determined by using Arrhenius method, Ingraham and Marrier method, and Coats and Redfern method was 72~99 kJ/mol. In the activation energy calculated by Ozawa-Flynn-Wall method, DAO had wider variation than other single materials.

Analysis on the Pyrolysis Characteristics of Waste Plastics Using Plug Flow Reactor Model (Plug Flow Reactor 모델을 이용한 폐플라스틱의 열분해 특성 해석)

  • Sangkyu, Choi;Yeonseok, Choi;Yeonwoo, Jeong;Soyoung, Han;Quynh Van, Nguyen
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.12-21
    • /
    • 2022
  • The pyrolysis characteristics of high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) were analyzed numerically using a 1D plug flow reactor (PFR) model. A lumped kinetic model was selected to simplify the pyrolysis products as wax, oil, and gas. The simulation was performed in the 400-600℃ range, and the plastic pyrolysis and product generation characteristics with respect to time were compared at various temperatures. It was found that plastic pyrolysis accelerates rapidly as the temperature rises. The amounts of the pyrolysis products wax and oil increase and then decrease with time, whereas the amount of gas produced increases continuously. In LDPE pyrolysis, the pyrolysis time was longer than that observed for other plastics at a specified temperature, and the amount of wax generated was the greatest. The maximum mass fraction of oil was obtained in the order of HDPE, PP, and LDPE at a specified temperature, and it decreased with temperature. Although the 1D model adopted in this study has a limitation in that it does not include material transport and heat transfer phenomena, the qualitative results presented herein could provide base data regarding various types of plastic pyrolysis to predict the product characteristics. These results can in turn be used when designing pyrolysis reactors.