• Title/Summary/Keyword: Pyrolysis process

Search Result 439, Processing Time 0.024 seconds

Preparation and Characterization of Mesophase Pitches from Petroleum Residues using Two-step Heat Treatment (석유계 잔사유로부터 저온 2단 열처리를 이용한 메조페이스 핏치 제조 및 특성)

  • JO, HANJOO;JUNG, MIN-JUNG;LEE, HYUNG-IK;LEE, YOUNG-SEAK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.421-430
    • /
    • 2016
  • To prepare mesophase pitches through low energy process, pyrolysis fuel oil with $AlCl_3$ has been modified using two-step heat treatment which is heat-treated at $330^{\circ}C$ for 3~5 h after pre-treatment at $250^{\circ}C$. The result of polarized optical microscope observation, mesophase is not observed in pitches carried out only pre-heat treatment. While mesophase content is significantly increased from 9% to 100% according to increasing secondary heat treatment time from 3 h to 5 h. Synthesizing of the mesophase pitch at low temperature of $330^{\circ}C$ is attributed to decrease of viscosity of the pitches carried out first heat treatment with $AlCl_3$. The result of Fourier-transform infrared spectroscopic analysis, it is expected that aromatization of aliphatic compounds is dominant at early secondary heat treatment, on the other hand, polycondensation reaction becomes dominant as secondary heat treatment time increases. Aromaticity and stacking height of the pitches secondary heat treated for 5 hours are more increased about 25% and 107%, respectively, than that of pitches carried out only first heat treatment.

Combustion Qualities of Waste Tire Oil as Substituting Light Oil for Greenhouse Heating (시설농업난방 경유대체유로서 폐타이어오일의 연소 특성)

  • 김영중;유영선;강금춘;이건중;윤진하
    • Journal of Biosystems Engineering
    • /
    • v.25 no.6
    • /
    • pp.481-488
    • /
    • 2000
  • This study was initiated in order to find alternative fuel substituting for light oil the most common fuel for heating greenhouse. The tire oil used in this research was produced by pyrolysis process, one of the final products besides steel string and carbon black in which waste tires as a form of chopped pieces broken by shredding machine are heated up to 200~30$0^{\circ}C$ with maximum restraining of oxygen supply. In order to justify light oil equivalent qualities in tire oil combustion characteristics were defined in the way of comparing kinetic viscosities in the wide range of temperature flame sizes and exhaust gas components in the various combustion conditions. We found that kinetic viscosity of tire oil was lower than light oil by 1 to 2 cSt in the temperature range showing better flowing mobility in the fuel line of the burner and no significant difference in flame size between the two oils in the all combustion treatments. However much more NO and SO$_2$ were detected from the exhaust gases of tire oil than light oil combustions. In fact tire oil contains more nitrogen and total sulfur, by 25 times and 40 times respectively than light oil according to the composition analysis. Tolerable limit for SO$_2$discharge amount defined by the national air pollution standards is under 540ppm so tire oil combustion satisfies the requirement though. It is desirable if sulfur and nitrogen filtering process shall be added in the tire oil production line. Except the exhaust gas components all greenhouse heating qualities of tire oil including hot air temperature are very identical to those of light oil.

  • PDF

In-situ Deposition Rate Measurement System to Improve the Accuracy of the Film Formation Process (성막 공정 정밀도 향상을 위한 실시간 성막 속도 측정 시스템)

  • Somi Park;Seung-Yo Baek;Hyun-Bin Kim;Jonghee Lee;Jae-Hyun Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.383-387
    • /
    • 2023
  • The quartz crystal microbalance (QCM), commonly used in high vacuum deposition, becomes difficult to use when a thick film is deposited on the quartz, affecting the crystal's inherent vibration. In this study, a non-destructive optical measurement method was developed to measure the film's deposition rate during the in-situ film deposition process. By measuring the scattered laser intensity caused by the dimer in the parylene gas passing through the gas flow path, it was successfully confirmed that the ratio of the dimer in the parylene gas increases as the pyrolysis temperature decreases. Additionally, it was noted that the film's thickness and haze increase as the pyrolysis temperature decreases by confirming the characteristics of the visible parylene films. Through the research results, we aim to utilize the stable in-situ film deposition rate measurement system to control the precise film deposition rate of parylene films.

Preparation of Nano-Sized ITO Powder from Waste ITO Target by Spray Pyrolysis Process (폐(廢) ITO 타겟으로부터 분무열분해(噴霧熱分解) 공정(工程)에 의한 ITO 나노 분말(粉末) 제조(製造))

  • Yu, Jae-Keun;Kang, Seong-Gu;Sohn, Jin-Gun
    • Resources Recycling
    • /
    • v.16 no.1 s.75
    • /
    • pp.28-36
    • /
    • 2007
  • Nano-sized ITO powders with the average particle size below 50 nm were synthesized from complex acid solution dissolved the ITO target into hydrochloric acid by a spray pyrolysis process, and the influences of reaction factors as reaction temperature and concentration of raw material solution were investigated. As the reaction temperature increases from 800 to $1000^{\circ}C$, the average particle size of the ITO powder increases from 40 nm to 100 nm, the microstructure gradually becomes solid, individual particles independently appear with the shape of polygon, the particle size distribution becomes increasingly irregular, the XRD peak intensity gradually increases and the specific surface area decreases. As the concentration of the raw material solution increases from 50g/l to 400g/l, the average particle size of ITO powder gradually increases, yet the particle size distribution appears more irregular. When the concentration is at 50 g/l, the average particle size of ITO powder is below 30 nm and the particle size distribution appears comparatively uniform. Nevertheless, when the concentration reaches 400 g/l, which is close to e saturated concentration, the particle size distribution appears extremely irregular, and the particles with the size ranging from 20 nm to 100 nm coexist. Along with the concentration rise, the XRD peak intensity gradually increases, yet the specific surface area decreases.

Preparation of Nano-Sized Indium Oxide Powder by Spray Pyrolysis Process (噴霧熱分解 工程에 의한 인듐 酸化物 나노 粉末 製造)

  • Yu, Jae-Keun;Park, Si-Hyun;Sohn, Jin-Gun
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.16-25
    • /
    • 2004
  • In this study, nano-sized indium oxide powder with the average particle size below 100 nm is prepared from the indium chloride solution by the spray pyrolysis process. The effects of the concentration of raw material solution, the nozzle tip size and the air pressure on the properties of powder were studied. As the indium concentration of the raw material solution increased from 40 g/l to 350 g/l, the average particle size of the powder gradually increased from 20 nm to 60 nm, yet the particle size distribution appeared more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the nozzle tip size increased from 1 nm to 5 nm, the average particle size of the powder increased from 40 nm to 100 nm, the particle size distribution was much more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the air pressure increased from 0.1 kg/cm$^2$ to 0.5 kg/cm$^2$, the average particle size of the powder varies slightly upto 90~100 nm. As the air pressure increased from 1 kg/cm$^2$ to 3 kg/cm$^2$, the average particle size decreased upto 50~60 nm, the intensity of a XRD peak decreased and the specific surface area increased.

Analysis of Environmental Impacts for the Biochar Production and Soil Application (폐목재를 이용한 바이오차 생산 및 토양적용의 환경평가)

  • Kim, Mihyung;Kim, Geonha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.461-468
    • /
    • 2014
  • Biochar is a carbon rich solid produced by the pyrolysis of biomass such as energy crops, forestry residues, and wood wastes. Biochar returned to soil is to mitigate climate change and the feedstock of wood wastes reduces fossil fuel consumption as well as disposal costs. This study was practiced to evaluate a biochar system by gasification in terms of global warming regarding the soil application of the produced biochar. Life cycle assessment methodology was used to analyze the environmental impacts of the system, and the functional unit was 1 tonne of wood wastes. The result shows that the biochar system by using wood wastes as feedstock produces 4.048E-01 $kgCO_2-eq$ from the pre-treatment process as chipping and drying, 4.579E-01 $kgCO_2-eq$ from the pyrolysis process, and 9.070E-02 $kgCO_2-eq$ from the spreading to agricultural land, therefore total 9.534E-01 $kgCO_2-eq$ are generated. About 252 kg of $CO_2$ is still stored in the produced biochar in soil after carbon offsetting of the system. Therefore, the net carbon of the system is -251 kg of $CO_2-eq$.

A Study on the Pore Structure Control with Heat Treatment Conditions of Waste Tire Carbon Residue (폐(廢)타이어 탄소잔류물(炭素殘留物)의 열처리(熱處理) 조건(條件)에 따른 카본 기공특성(氣孔特性) 연구(硏究))

  • Won, JiYeon;Lee, Yoon Joo;Kim, Jong Il;Kim, Younghee;Kim, Soo Ryong;Lee, Hyun Jae;Ko, Tae Gyung;Lee, MiJai;Kwon, Woo Teck
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.11-17
    • /
    • 2013
  • The recycling technology of carbon residue produced from the process of oil recovery in waste tire pyrolysis is significant in environmental and economical aspects. This study was done to figure out the recycling possibility of carbon residue to activated carbon. For this, the characteristics of the carbon residue obtained from the commercial pyrolysis process of waste tire were studied. Also, the variation of pore structure of carbon residue was studied after 1 hour of carbonization at $600^{\circ}C$ and $800^{\circ}C$ and 3 hours of activation at $950^{\circ}C$. The specific surface area of the carbon residue was $8.0m^2/g$ and it increased to $548.3m^2/g$ after carbonization and activation.

Manufacture of Nano-Sized Ni-ferrite Powder from Waste Solution by Spray Pyrolysis Process (분무열분해 공정에 의한 폐액으로부터 니켈 페라이트 나노 분말 제조)

  • Yu Jae-Keun;Suh Sang-Kee;Kang Seong-Gu;Kim Jwa-Yeon;Park Si-Hyun;Park Yaung-Soo;Choi Jae-Ha;Sohn Jin-Gun
    • Resources Recycling
    • /
    • v.12 no.4
    • /
    • pp.20-29
    • /
    • 2003
  • In order to efficiently recycle the waste solution resulting from shadow mask processing, nano-sized Ni-ferrite powder was fab-ricated through spray pyrolysis process. The average particle size of the powder was below 100nm. In this study, the effects of the reaction temperature. the concentration of raw material solution and the injection speed of solution on the properties of powder were respectively investigated. As the reaction temperature increased from $800^{\circ}C$ to $1100^{\circ}C$, average particle size of the powder significantly Increased and power structure became more solid, whereat its specific surface area was greatly reduced. Formation rate and crystallization of($NiFe_2$$O_4$) phale increased along with the temperature rise. As the concentrations of iron and nickel components in wastere solution increased, particle size of the powder became larger, particle size distribution became more irregular, and specific surface area was reduced. Formation rate and crystallization of $NiFe_2$$O_4$ phase increased significantly along with the increase of the concentration of solution. As the inlet speed of solution increased, particle size of the powder became larger, particle size distribution became wider, specific surface area was reduced and powder structure became less solid. As the inlet speed of solution decreased, formation rate and crystallization of $NiFe_2$$O_4$ phase significantly increased.

Effect of Nozzle Tip Size on the Preparation of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process (분무열분해 공정에 의한 코발트 산화물 나노 분체 제조에 미치는 노즐 팁 크기의 영향)

  • Kim, Dong Hee;Yu, Jae Keun
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.41-49
    • /
    • 2016
  • The present study was intended to prepare cobalt oxide ($Co_3O_4$) powder of average particle size 50 nm or less by spray pyrolysis reaction using the raw cobalt chloride ($CoCl_2$) solution, in order to identify the change in the nature of the particles according to the change in the nozzle tip size. When the nozzle tip was 1 mm, it turned out that most of the droplets were spherical and the surface showed very tight structure. The average particle size of the finally formed particles was 20-30 nm. When the nozzle tip size was 2 mm, some of the droplets formed were spherical, but a considerable part of them showed severely disrupted form. particles formed showed an average particle size of 30 - 40 nm. For the nozzle tip size of 5 mm, spherical droplets were almost non-existent and most were in badly fragmented state. The tightness of surface structure of the droplets has greatly been reduced compared with other nozzle tip sizes. Average size of the formed particles was about 25 nm. As the nozzle tip size increased from 1 mm to 2 mm and 3 mm, the intensities of the XRD peaks have changed little, but significantly been reduced when the nozzle tip size increased to 5mm. As the nozzle tip size increased from 1 mm to 2 mm, the specific surface area of the particles decreased, but the nozzle tip size increased to 5mm, the specific surface area remarkably increased.

Pyrolysis Characteristics of Sludge Discharged from Paper Mill Process (제지공정에서 발생하는 슬러지의 열분해 특성)

  • Ko, Jae-Churl;Kim, Seung-Ho;Park, Young-Koo;Jeon, Jea-Yeoul;Kim, Jin-Ho;Park, Joon-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.80-87
    • /
    • 2009
  • This research was conducted to evaluate pyrolysis characteristics of the sludge discharged from paper mill process with sintering temperature. The sludge was composed of 70.72% of moisture, 9.52% of volatile solids, and 19.76% of ash, respectively. The sludge contained high 66.40% of $Fe_2O_3$ and CaO(15.80%), $Al_2O_3$(9.42%), and $SO_3$(3.75%) components, and minor $SiO_2$, $Na_2O$, and $Cr_2O_3$ were also contained in it. The other components except $Fe_2O_3$ and $Cr_2O_3$ were slightly decreased with increase of sintering temperature. Specific surface area of the sludge before sintering was $130m^2/g$ and ones after sintering at $400^{\circ}C$ and $700^{\circ}C$ were $114m^2/g$ and $33m^2/g$ respectively. Specific surface area of sludge was decreased with increase of sintering temperature. From the result of TG-DTA, it was shown that weight of the sludge was decreased by moisture and organic loss until $600^{\circ}C$ and decreased by volatilization of metal components and additional combustion of carbon until $800^{\circ}C$.