• Title/Summary/Keyword: Pyrolysis characteristics

Search Result 406, Processing Time 0.028 seconds

Product Distribution Characteristics of High-Impact Polystyrene Depolymerization by Pyrolysis (열분해에 의한 내충격 폴리스티렌 해중합 생성물의 분포 특성)

  • Lee, Bong-Hee;Yu, Hong-Jeong;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.64-68
    • /
    • 2005
  • To recycle collected high-impact polystyrene (HIPS) wastes as liquid fuel, depolymerization characteristics of HIPS by pyrolysis was studied. The effects of temperature and time on the pyrolysis of HIPS were investigated. The depolymerization temperature and activation energy of HIPS pyrolysis increased with increasing heating rate. In general, conversion and liquid yield gradually increased with pyrolysis temperature and pyrolysis time. Each liquid product formed during pyrolysis was classified into gasoline, kerosene, light oil and heavy oil according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. As a result, the amount of liquid products produced during HIPS pyrolysis was in the order of gasoline》heavy oil〉kerosene〉light oil. Especially 51${\pm}$6 wt% of HIPS treated was obtained as gasoline.

Liquefaction Characteristics of PP by Pyrolysis (PP의 열분해에 의한 액화 특성)

  • Yu, Hong-Jeong;Lee, Bong-Hee;Park, Su-Yul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.258-264
    • /
    • 2002
  • Pyrolysis of polypropylene(PP) Was performed to find the effects of the pyrolysis temperature(425, 450, 475 and $500^{\circ}C$) and the pyrolysis time(35, 50 and 65minutes), respectively. Conversion and liquid yield obtained during PP pyrolysis continuously increased with the pyrolysis temperature( up to $500^{\circ}C$) and the pyrolysis time(up to 65minutes), especially these were more sensitive to the pyrolysis time at $425^{\circ}C$ than other pyrolysis temperatures. Each liquid product formed during the pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The liquid products of PP pyrolysis up to $450^{\circ}C$ were almost same fractions($26{\pm}3$wt.% gasoline, $20{\pm}2$wt.% kerosene and $23{\pm}2$wt.% light oil) except wax($3{\sim}13$wt.%). On the other hand, the pyrolysis of PP from $475^{\circ}C$ to $500^{\circ}C$ produced $26{\pm}3$wt.% wax, $24{\pm}1$wt.% gasoline, $18{\pm}1$wt.% kerosene and $16{\pm}1$wt.% light oil. After all, the main liquid product changed from gasoline to wax with increasing pyrolysis temperature.

Liquefaction Characteristics of HDPE, PP and PS by Isothermal Pyrolysis (HDPE, PP 및 PS의 등온열분해에 의한 액화 특성)

  • Yu, Hong-Jeong;Park, Su-Yul;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.198-205
    • /
    • 2002
  • Isothermal pyrolysis of high density polyethylene(HDPE), polypropylene(PP) and polystyrene(PS) was performed at $450^{\circ}C$, respectively. The effect of pyrolysis time on yield and product composition was investigated. Conversion and liquid yield obtained during HDPE pyrolysis continuously increased with time up to 80minutes, but those of PP and PS did not largely change after 35minutes. Each liquid product formed during the pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The major liquid product of HDPE pyrolysis was light oiH34 wt.% based on the amount of HDPE treated) and the amounts of the other liquid ingredients(gasoline, kerosene and wax) were almost the same. On the other hand, the pyrolysis of PP produced 27 wt.% gasoline, 22 wt.% kerosene, 24 wt.% light oil and 13wt.% wax, and the pyrolysis of PS produced 56 wt.% gasoline, 12 wt.% kerosene, 9 wt.% light oil and 13 wt.% wax.

Development on Integrated Pyrolysis Cogeneration System for Waste Tire Recycling Treatment (폐타이어 재활용 처리를 위한 열분해 열병합 복합공정기술개발)

  • Kim, Seong-Yeon;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1990-1995
    • /
    • 2008
  • The thermochemical recycling of waste tires by pyrolysis is studied to recover the value added three by-products; a pyrolytic carbon black, a pyrolytic oil, and a non-condensable gas. The exhausted energy from pyrolysis of waste tires is converted for electricity power and process steam in cogeneration system. The characteristics of the pyrolysis recovered by-products as alternative energy resource are investigated with the design of a demonstration and a commercialization plant including cogeneration system, as called integrated pyrolysis cogeneration system.

  • PDF

Characterisation of the pyrolysis oil derived from bael shell (aegle marmelos)

  • Bardalai, Monoj;Mahanta, Dimbendra Kumar
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.180-187
    • /
    • 2016
  • In the present work, bael shell (aegle marmelos) is used as the feedstock for pyrolysis, using a fixed bed reactor to investigate the characteristics of the pyrolysis oil. The product yields, e.g., liquid, char and gases are produced from the biomass at different temperatures with the particle size of 0.5-1.0 mm, at the heating rate of $150^{\circ}C/min$. The maximum liquid yield, i.e., 36.23 wt.%, was found at $5500^{\circ}C$. Some physical properties of the pyrolysis oil such as calorific value, viscosity, density, pH, flash point and fire point are evaluated. The calorific value of the bael shell pyrolysis oil was 20.4 MJ/kg, which is slightly higher than the biomass, i.e., 18.24 MJ/kg. The H/C and O/C ratios of the bio-oil were found as 2.3 and 0.56 respectively, which are quite higher than some other bio-oils. Gas Chromatography and Mass Spectroscopy (GC-MS) and Fourier Transform Infra-red (FTIR) analyses showed that the pyrolysis oil of bael shell is mostly composed by phenolic and acidic compounds. The results of the properties of the bael shell pyrolysis oil reveal the potential of the oil as an alternate fuel with the essential upgradation of some properties.

Combustion Characteristics of Synthesis Gas Generated in Waste Pyrolysis Process (폐기물 열분해과정에서 발생된 합성가스의 연소 특성)

  • Ahn, Yong-Soo;Hwang, Sang-Soon;Lee, Sung-Ho;Lee, Hyup-Hee
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.143-150
    • /
    • 2003
  • The synthesis gas generated in waste pyrolysis melting process which consists of pyrolysis of waste and melting process of ash is known to be an alternative fuel. Since the compositopn of synthesis gas is much different from other synthesis gases, the fundamental combustion characteristics are analyzed in this study. The radiation heat heat flux is used to estimate the heat flux from flames made by many combinations of fuel and oxidant supply. The results show that the synthesis gas needs much more amount of oxidant for equivalent heat flux to methane flame and the inverse diffusion flame type for synthesis gas burner is suitable for better radiation heat transfer.

  • PDF

A Study on the Characteristics of Plasma Blacks Prepared by Plasma Pyrolysis Over Metals Coated Honeycomb Catalysts

  • Park, Soo-Yeop;Lee, Joong-Kee;Yoo, Kyung-Seun;Cho, Won-Ihl;Baek, Young-Soon
    • Carbon letters
    • /
    • v.4 no.2
    • /
    • pp.74-78
    • /
    • 2003
  • Four kinds of plasma blacks were prepared by plasma pyrolysis under various metallic catalysts coated on honeycomb, and investigated the catalytic effect on the characteristics of the plasma blacks prepared under plasma pyrolysis condition. Pt, Pt-Rh, and Pd catalysts were employed as active materials to prepare the plasma blacks. In the experimental range studied, the metallic catalysts influenced on surface area, particle size, surface oxygen content and electrical conductivity of the plasma blacks prepared. It was showed that more dense particle of plasma blacks were prepared under existence of metallic catalysts. Presence of the metallic catalyst reduces the electrical resistivity of plasma blacks due to the decrease in the amount of oxygen functional groups. The highest electrical conductivity of plasma black was observed in the Pt catalyst and then followed by those Pt-Rh, Pd and bare cordierite honeycomb.

  • PDF

Influence of the Structural Characteristics of Amino Acids on Direct Methylation Behaviors by TMAH in Pyrolysis

  • Choi, Sung-Seen;Ko, Ji-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2542-2548
    • /
    • 2009
  • Direct methylation behaviors of 20 amino acids with tetramethylammonium hydroxide (TMAH) were studied under diluted conditions with silica. Amino acid concentration was controlled by dilution with silica ($SiO_2$) and the molar ratios of amino acid/silica were 0.20, 0.50, and 2.0. The molar ratios of amino acid/TMAH (0.51 - 4.64) also varied. It was found that arginine, asparagine, aspartic acid, cysteine, glutamic acid, and glutamine did not generate any directly methylated pyrolysis products, whereas alanine, glycine, isoleucine, leucine, methionine, phenylanaline, valine, and proline generated all the directly methylated pyrolysis products. Tri- and tetra methylated products of lysine consisted of two types. Histidine and threonine hardly generated the partly methylated products. Mono- and dimethylated products of serine, tryptophan, and tyrosine were not observed. Relative intensities of the methylated products varied with the amino acid concentration, TMAH concentration, and pyrolysis temperature. Direct methylation behaviors of amino acids were explained by the structural characteristics of amino acids.

Combustion Characteristics of Municipal Wastes in Pyrolysis Incinerator (열분해 소각시설에서의 일반폐기물의 연소특성)

  • Park, Myung-Ho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.149-156
    • /
    • 2011
  • In case of domestic pyrolysis dry distillation gassification technology, it stays at the stage of its early introduction and development. Moreover, the companies possessed of this technology are limited to Japan and some countries in Europe, and domestic operative performance of this system is nominal, so there exist a lot of difficulties in securing its basic data. In addition, considering its operation and management, there happens a corrosion of metals by the production of corrosive gases in time of combustion of waste, and there arise a problem of occurrence of low temperature corrosion on exterior casing or gas ducts of a combustion chamber due to the high temperature corrosion around the burner of an incinerator, lowering the durability of an incinerator. Therefore, this study looked at the problems arising in time of incineration by understanding the characteristics of the pyrolysis dry distillation gassification incinerating facility, and did research on the improvement plan for durability of an incinerator for more economic, efficient waste incineration.

The Study of nc-ZnO/ZnO Field-effect Transistors Fabricated by Spray-pyrolysis Process (스프레이 공정을 이용한 nc-ZnO/ZnO 전계효과트랜지스터 제작 및 특성 분석)

  • Cho, Junhee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.22-25
    • /
    • 2022
  • Metal oxide semiconductor (MOS) based on spray-pyrolysis deposition technique has attracted large attention due to simple and low-cost processibility while preserving their intrinsic optical and electrical characteristics. However, their high process temperature limits practical applications. Here, we demonstrated the nc-ZnO/ZnO field-effect transistors (FETs) via spray-pyrolysis as incorporating ZnO nanocrystalline nanoparticles into typical ZnO precursor. The nc-ZnO/ZnO FETs exhibit good quality of electrical properties. Our experiments reveal that nc-ZnO in active layer enhance electrical characteristics.