• Title/Summary/Keyword: Pyrogallol

Search Result 120, Processing Time 0.03 seconds

Potentiation of endothelium-dependent vasorelaxation of mesenteric arteries from spontaneously hypertensive rats by gemigliptin, a dipeptidyl peptidase-4 inhibitor class of antidiabetic drug

  • Kim, Hae Jin;Baek, Eun Bok;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.713-719
    • /
    • 2018
  • Dipeptidyl peptidase4 (DPP4) inhibitors such as gemigliptin are antidiabetic drugs elevating plasma concentration of incretins such as GLP-1. In addition to the DPP4 inhibition, gemigliptin might directly improve the functions of vessels under pathological conditions. To test this hypothesis, we investigated whether the acetylcholine-induced endothelium dependent relaxation (ACh-EDR) of mesenteric arteries (MA) are altered by gemigliptin pretreatment in Spontaneous Hypertensive Rats (SHR) and in Wistar-Kyoto rats (WKY) under hyperglycemia-like conditions (HG; 2 hr incubation with 50 mM glucose). ACh-EDR of WKY was reduced by the HG condition, which was significantly recovered by $1{\mu}M$ gemigliptin while not by saxagliptin and sitagliptin up to $10{\mu}M$. The ACh-EDR of SHR MA was also improved by $1{\mu}M$ gemigliptin while similar recovery was observed with higher concentration ($10{\mu}M$) of saxagliptin and sitagliptin. The facilitation of ACh-EDR by gemigliptin in SHR was not observed under pretreatment with NOS inhibitor, L-NAME. In the endothelium-denuded MA of SHR, sodium nitroprusside induced dose-dependent relaxation was not affected by gemigliptin. The ACh-EDR in WKY was decreased by treatment with $30{\mu}M$ pyrogallol, a superoxide generator, which was not prevented by gemigliptin. Exendin-4, a GLP-1 analogue, could not enhance the ACh-EDR in SHR MA. The present results of ex vivo study suggest that gemigliptin enhances the NOS-mediated EDR of the HG-treated MA as well as the MA from SHR via GLP-1 receptor independent mechanism.

The Butanol Fraction of Bitter Melon (Momordica charantia) Scavenges Free Radicals and Attenuates Oxidative Stress

  • Kim, Hyun Young;Sin, Seung Mi;Lee, Sanghyun;Cho, Kye Man;Cho, Eun Ju
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.18-22
    • /
    • 2013
  • To investigate radical scavenging effects and protective activities of bitter melon (Momordica charantia) against oxidative stress, in vitro and a cellular system using LLC-$PK_1$ renal epithelial cells were used in this study. The butanol (BuOH) fraction of bitter melon scavenged 63.4% and 87.1% of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals at concentrations of 250 and $500{\mu}g/mL$, respectively. In addition, the BuOH fraction of bitter melon effectively scavenged hydroxyl radicals (${\cdot}OH$). At all concentrations tested, the scavenging activity of the BuOH fraction was more potent than that of the positive control, ascorbic acid. Furthermore, under the LLC-$PK_1$ cellular model, the cells showed a decline in viability and an increase in lipid peroxidation through oxidative stress induced by pyrogallol, a generator of superoxide anion ($O_2{^-}$). However, the BuOH fraction of bitter melon significantly and dose-dependently inhibited cytotoxicity. In addition, 3-morpholinosydnonimine (SIN-1), a generator of peroxynitrite ($ONOO^-$) formed by simultaneous releases of nitric oxide and $O_2{^-}$, caused cytotoxicity in the LLC-$PK_1$ cells while the BuOH fraction of bitter melon ameliorated oxidative damage induced by $ONOO^-$. These results indicate that BuOH fraction of bitter melon has protective activities against oxidative damage induced by free radicals.

Antioxidative Effects of Common and Organic Kale Juices (유기농 및 일반농 케일 착즙액의 항산화 활성)

  • Kim, Jong-Dai;Lee, Ok-Hwan;Lee, Jong Seok;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.5
    • /
    • pp.668-674
    • /
    • 2014
  • The objective of the present study was to investigate the protective and free radical scavenging effects of conventionally and organically cultivated kale juices against oxidative damage in $LLC-PK_1$ cells. The DPPH, NO, $O_2{^-}$, and ${\cdot}OH$ radical scavenging activities of organically cultivated kale were higher than those of conventionally cultivated kale juice. Oxidative damage induced by AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride), SNP (sodium nitroprusside), pyrogallol, and SIN-1 (3-morpholinosydnonimine) led to loss of cell viability and increased lipid peroxidation in LLC-PK1 cells, whereas treatment with vegetable juices, especially organically cultivated kale juices, significantly increased cell viability and inhibited lipid peroxidation in a dose-dependent manner (P<0.05). These results suggest that organically cultivated kale juices have protective roles against oxidative stress induced by free radicals.

Antioxidative Activity and Nitrite Scavenging Ability of Ethanol Extract from Nelumbo nucifera Leaves (연잎 에탄올 추출물의 항산화 효과 및 아질산염 소거능)

  • Lim, Jin-A;Lee, Eun-Sook;Baek, Seung-Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.654-659
    • /
    • 2008
  • To confirm possibility of Nelumbo nucifera leaves as biofunctional material, we investigated the antioxidant activity and nitrite scavenging ability of ethanol extract from Nelumbo nucifera leaves. Nelumbo nucifera leaves were extracted with ethanol and concentrated under vacuum using rotary evaporator. Then, antioxidative activity and nitrite scavenging ability of the extract were examined in vitro. Electron -donating ability of the extract at RC50 was 90.19 ${\mu}g/mL$. After addition of 0.96 mg/mL, autooxidation of pyrogallol decreased to 66.19% by superoxide dismutase-like activity. In antioxidative activity of the extract against linoleic acid during incubation times of 24, 48, and 96 hours at $40^{\circ}C$, lipid peroxidation values significantly decreased to 72.53%, 82.00%, 84.69% with addition of 0.2 mg/mL, respectively. Total phenolic content was determined as gallic acid equivalents (GAE) and the value revealed to be $282.84\;{\pm}\;9.03$ GAE ${\mu}g/mg$ of the extract. Nitrite scavenging ability showed the most remarkable effect at pH 1.2, exhibited to 45.55% by addition of 0.2 mg/mL. These results suggest that ethanol extract from N. nucifera leaves can be used as bioactive and functional material.

Purification and Characterization of Laccase from Wood-Degrading Fungus Trichophyton rubrum LKY-7

  • Hyunchae Jung;Park, Chongyawl;Feng Xu;Kaichang Li
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.04a
    • /
    • pp.18-25
    • /
    • 2001
  • A new wood-degrading fungus Trichophyton rubrum LKY-7 secretes a high level of laccase in a glucose-peptone liquid medium. The production of laccase by the fungus was barely induced by 2,5-xylidine. The laccase has been purified to homogeneity through three chromatography steps in an overall yield of 40%. The molecular mass of the purified laccase was about 65 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified laccase had the distinct blue color and had basic spectroscopic features of a typical blue laccase: two absorption maxima at 278 and 610 nm and a shoulder at 338 nm. The N-terminus of the laccase has been sequenced, revealing high homology to laccases from wood-degrading white-rot fungi such as Ceriporiopsis subvermispora. The enzyme had a "low" redox potential (0.5 V vs normal hydrogen electrode), yet it was one of the most active laccases in oxidizing a series of representative substrates/mediators. Compared with other fungal laccases, the laccase has a very low Km value with ABTS [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid] as a substrate and a very high Km value with violuric acid as a substrate. The laccase has the isoelectric point of 4.0. The laccase had very acidic optimal pH values (pH 3-4) while it was more stable at neutral pH than at acidic pH. The laccase oxidized hydroquinone faster than catechol and pyrogallol. The oxidation of tyrosine by the laccase was not detectable under the reaction conditions. The laccase was strongly inhibited by sodium azide and sodium fluoride. fluoride.

  • PDF

Antioxidant and Hepatoprotective Effects of Tomato Extracts

  • Rhim, Tae-Jin
    • Korean Journal of Plant Resources
    • /
    • v.19 no.6
    • /
    • pp.649-654
    • /
    • 2006
  • The objective of present study was to investigate the anti oxidative and hepatoprotective effects of tomato extracts. Total antioxidant capacity and total antioxidant response were 5.5 and $19.8{\mu}g$ Trolox equivalent per mg of tomato extract, respectively. DPPH radical scavenging activity of tomato extracts ($10mg\;ml^{-1}$) was 70% as compared to 100% by pyrogallol solution as a reference. The effect of the tomato extracts on lipid peroxidation was examined using rat liver mitochondria induced by iron/ascorbate. Tomato extracts at the concentration of $0.5mg\;ml^{-1}$ significantly decreased TBARS concentration. Tomato extracts prevented lipid peroxidation in a dose-dependent manner. The effect of the tomato extracts on reactive oxygen species (ROS) generation was examined using cell-free system induced by $H_2O_2/FeSO_4$. Addition of $1mg\;ml^{-1}$ of tomato extracts significantly reduced dichlorofluorescein (DCF) fluorescence. Tomato extracts caused concentration-dependent attenuation of the increase in DCF fluorescence, indicating that tomato extracts significantly prevented ROS generation in vitro. The effect of tomato extracts on cell viability and proliferation was examined using hepatocyte culture. Primary cultures of rat hepatocytes were incubated with 1mM tert-butyl hydroperoxide (t-BHP) for 90 min in the presence or absence of tomato extracts. MTT values by addition of tomato extracts at the concentration of 2, 10, and $20mg\;ml^{-1}$ in the presence of t-BHP were 13, 33 and 48%, respectively, compared to 100% as control. Tomato extracts increased cell viability in a dose-dependent manner. These results demonstrate that tomato extracts suppressed lipid peroxidation and t-BHP-induced hepatotoxicity and scavenged ROS generation. Thus antioxidant and hepatoprotective effects of tomato extracts seem to be due to, at least in part, the prevention from free radicals-induced oxidation, followed by inhibition of lipid peroxidation.

Studies on the antioxidant Effects of Carthami Flos Extract (홍화(紅花) 추출물의 항산화 효과에 대한 연구)

  • Yoo, Jin-Sook;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.28 no.1 s.69
    • /
    • pp.137-147
    • /
    • 2007
  • Objective : The objective of this study was to investigate the antioxidative effects of Carthami Flos extract. Methods : Total antioxidant status was examined by total antioxidant capacity(TAC) and total antioxidant response(TAR) against potent free radical reactions. The effect of Carthami Flos extract was examined far details of total phenolic content concentration at which 1,1-dipheny1-2-picrylhydrazyl(DPPH) radical scavenging activity was inhibited, the inhibitory effect on lipid peroxidation, and the effect on reactive oxygen species(ROS) generation. Results : TAC of Carthami Flos extract at the concentration of 5 mg/ml was 1.84 mM Trolox equivalent. 2. TAR of Carthami Flos extract, on the other hand, couldn't be determined due to interference from unidentified compounds. 3. Total phenolic content of Carthami Flos extract at the concentration of 5 mg/ml was 2.01 mM gallic acid equivalent. 4. Concentration of Carthami Flos extract at which DPPH radical scavenging activity was inhibited by 50% was 6.43 mg/ml as compared to 100% by Pyrogallol solution as a reference. 5. The inhibitory effect of the extract on lipid peroxidation was examined using rat liver mitochondria induced by FeS04/ascorbic acid. Carthami Flos extract at the concentration of 10 ms/ml slightly but significantly decreased TBARS concentration. The extract continued to prevent lipid peroxidation in a dose-dependent manner. 6. The effect of Carthami Flos extract on reactive oxygen species(ROS) generation was examined using a cell-free system induced by hydrogen peroxide/FeS04. Addition of 1 mg/ml of Carthami Flos extract significantly reduced dichlorofluorescein(DCF) fluorescence. Carthami Flos extract caused concentration-dependent attenuation of the increase in DCF fluorescence, indicating that the ektract significantly prevented ROS generation in vitro. Conclusion: : Antioxidant efffcts of Carffami ffor extract seem to be due, at least in part, to the prevention offree radical-induced oxidation, fellowed by inhibition of lipid peroxidation.

  • PDF

Studies on the Antioxidant Effects of Mori Folium Extract (상엽(桑葉)추출물의 항산화효과에 대한 연구)

  • Lee, Ji-Eun;Lim, Hyung-Ho;Song, Yun-Kyung
    • The Journal of Korean Medicine
    • /
    • v.28 no.1 s.69
    • /
    • pp.148-158
    • /
    • 2007
  • Objective : The objective of this study was to investigate the antioxidant effects of Mori Folium extract. Methods Total antioxidant status was examined by total antioxidant capacity(TAC) and total antioxidant response(TAR) against potent free radical reactions. The effect of Mori Folium extract was examined by measuring total phenolic content, concentration at which 1,1-dipheny1-2-picrylhydrazyl(DPPH) radical scavenging activity was inhibited, inhibitory effect on lipid peroxidation, and the effect on reactive oxygen species(ROS) generation. Results : 1. TAC and TAR of Mori Folium extract at the concentration of 5 mg/ml were 1.61 and 1.24 mM Trolox equivalents, respectively. 2. Total phenolic content of Mori Folium extract at the concentration of 5 mg/Ml was 1.70 mM gallic acid equivalent. 3. Concentration of Mori Folium extract at which DPPH radical scavenging activity was inhibited by 50% was 2.29 m9/m4 as compared to 100% by Pyrogallol solution as a reference. 4. The inhibitory effect of the extract on lipid peroxidation was examined using rat liver mitochondria induced by FeSO$_4$/ascorbic acid. Mori Folium extract at the concentration of 10 mg/ml significantly decreased thiobarbituric acid reactive substances(TBARS) concentration. The extract prevented lipid peroxidation in a dose-dependent 5. The effect of Mori Folium extract on reactive oxygen species(ROS) generation was examined using a celt-free system induced by hydrogen peroxide FeSO$_4$. Addition of 1 mg/ml of Mori Folium extract significantly reduced dichlorofluorescein(DCf) fluorescence. The extract caused concentration-dependent attenuation of the increase in DCF fluorescence, indicating that the extract significantly prevented ROS generation in vitro. Conclusion ; The antioxidant effects of Mori Folium extract seem to be due, at least in part, to the prevention offree radical-induced oxidation, fllowed by inhibition of lipid peroxidation.

  • PDF

Protective Effect of Chungkukjang from Sunchang Province against Cellular Oxidative Damage

  • Choi, Ji-Myung;Yi, Na-Ri;Seo, Kyoung-Chun;Han, Ji-Sook;Song, Young-Ok;Cho, Eun-Ju
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.90-94
    • /
    • 2008
  • The protective effect of chungkukjang from Sunchang province against oxidative stress was evaluated in the cellular system using LLC-$PK_1$ renal epithelial cells. The LLC-$PK_1$ cells showed decrease in cell viability and elevation in lipid peroxidation by the treatment with the generators of nitric oxide (NO) and superoxide anion ($O_2^-$) produced by sodium nitrouprusside and pyrogallol, respectively. However, the methanol extract of chungkukjang significantly inhibited cellular loss and lipid peroxidation in a dose-dependent manner; in particular K chungkukjang (KC) exerted the strongest protective effect. In addition, the protective effect of chungkukjang from 3-morpholinosydnonimine, as a source of peroxynitrite, with simultaneous generations of NO and $O_2^-$, was also studied. Treatment with chungkukjangs significantly preserved the cell viability and inhibited lipid peroxidation caused by SIN-1 with dose-dependence. The present study suggests that chungkukjang from Sunchang province, especially KC, would have protective potential from oxidative stress induced by free radicals under cellular oxidative damage.

The protective effect of Perilla frutescens from ONOO--induced oxidative stress and antiaging effect under cellular system (Cellular system에서의 깻잎의 ONOO-에 의한 산화적 스트레스 개선 및 항노화 효과)

  • Kim, Hyun Young;Hwang, Bo Ra;Wu, Ting Ting;Cho, Eun Ju
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.4
    • /
    • pp.467-471
    • /
    • 2012
  • In this study, we investigated the antioxidative and antiaging activity of Perilla frutescens using LLC-$PK_1$ porcine renal epithelial cell and WI-38 human diploid fibroblast cell. The extract from Perilla frutescens showed strong protective effect against nitric oxide (NO) and superoxide ($O_2{^-}$)-induced oxidative stress generated by sodium nitroprusside (SNP) and pyrogallol, respectively. The result showed that P. frutescens increased the cell viability and showed scavenging activity of NO and $O_2{^-}$. In addition, the extract of P. frutescens exerted the protective effect against peroxynitrite ($ONOO^-$) induced by 3-morpholinosydnonimine. It suggests that P. frutescens would have the protective role against $ONOO^-$ itself and its precursors, NO and $O_2{^-}$. Furthermore, the aging model of hydrogen peroxide ($H_2O_2$)-treated WI-38 human diploid fibroblast was employed to investigate the anti-aging effect of P. frutescens. $H_2O_2$-treated WI-38 cells showed the loss of cell viability, however before-treatment with P. frutescens to WI-38 cells under premature senescence could delay the cellular aging process. The present study suggests the antioxidative and antiaging potential against free radical-induced oxidative damage of P. frutescens.