• Title/Summary/Keyword: Pyrene fluorescence

Search Result 72, Processing Time 0.022 seconds

Determination of Microviscosity and Location of 1,3-Di(1-pyrenyl) propane in Brain Membranes

  • Kang, Jung-Sook;Kang, In-Goo;Yun, Il
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • We determined the microviscosity of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex and liposomes of total lipids (SPMTL) and phospholipids (SPMPL) extracted from SPMV. Changes in the microviscosity induced by the range and rate of lateral diffusion were measured by the intramolecular excimerization of 1, 3-di(1-pyrenyl)propane (Py-3-Py). The microviscosity values of the direct probe environment in SPMV, SPMTL and SPMPL were 38.17, 31.11 and 27.64 cP, respectively, at$37^{\circ}C$and the activation energies $(E_a)$ of the excimer formation of Py-3-Py in SPMV, SPMTL and SPMPL were 8.236, 7.448 amd 7.025 kcal/mol, respectively. Probe location was measured by polarity and polarizability parameters of the probe Py-3-Py and probe analogues, pyrene, 1-pyrenenonanol and 1-pyrenemethyl-3${\beta}$-hydroxy-22, 23-bisnor-5-cholenate (PMC), incorporated into membranes or solubilized in reference solvents. There existed a good linear relationship between the first absorption peak of the $^1_a$ band and the polarizability parameter $(n^{2}-1)/(2n^{2}+1)$.The calculated refractive index values for SPMV, SPMTL and SPMPL were close to 1.50, which is higher than that of liquid paraffin (n=l.475). The probe location was also determined by using a polarity parameter $(f-1/2f^{I})$. Here f=$({\varepsilon}-1)/(2{\varepsilon}+1)$ is the dielectric constant function and $f^I=(n^2-1)/(2n^2+1)$ is the refractive index function. A correlation existed between the monomer fluorescence intensity ratio and the solvent polarity parameter. The probes incorporated in SPMV, SPMTL, and SPMPL report a polarity value close to that of 1-hexanol $({\varepsilon}=13.29)$. In conclusion, Py-3-Py is located completely inside the membrane, not in the very hydrophobic core, but displaced toward the polar head groups of phospholipid molecules, e.g., central methylene region of aliphatic chains of phospholipid molecules.

  • PDF

Influence of Polycyclic Aromatic Hydrocarbons Formation in Sesame Oils with Different Roasting Conditions (참깨의 볶음 조건이 참기름 중 polycyclic aromatic hydrocarbons 생성에 미치는 영향)

  • Seo, Il-Won;Nam, He-Jung;Shin, Han-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.355-361
    • /
    • 2009
  • Polycyclic aromatic hydrocarbons (PAHs) are environmental carcinogenic compounds that arise by several means including food processing methods such as smoking and direct drying and cooking. This study examined the concentration of PAHs in sesame oils with various roasting temperatures (190, 220 and $250^{\circ}C$), methods (direct heating vs. indirect hot air heating), and times (5, 10, 15, 20 and 25 min). The PAHs in the sesame oils were analyzed using liquid-liquid extraction and solid-phase clean up (Florisil), followed by HPLC with fluorescence detection. According to the results, mean levels of total PAHs increased when the sesame oils were roasted at increasing temperatures and times. The sesame oil roasted at $250^{\circ}C$ for 25 min had the highest mean value of total PAHs (4.66 ${\mu}g$/kg). The results of this study suggest that the indirect hot air roasting method decreased PAH formation during sesame oil processing.