• Title/Summary/Keyword: Pyramidal Representation

Search Result 4, Processing Time 0.018 seconds

A study on optimal Image Data Multiresolution Representation and Compression Through Wavelet Transform (Wavelet 변환을 이용한 최적 영상 데이터 다해상도 표현 및 압축에 관한 연구)

  • Kang, Gyung-Mo;Jeoung, Ki-Sam;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.31-38
    • /
    • 1994
  • This paper proposed signal decomposition and multiresolution representation through wavelet transform using wavelet orthonormal basis. And it suggested most appropriate filter for scaling function in multiresoltion representation and compared two compression method, arithmetic coding and Huffman coding. Results are as follows 1. Daub18 coefficient is most appropriate in computing time, energy compaction, image quality. 2. In case of image browsing that should be small in size and good for recognition, it is reasonable to decompose to 3 scale using pyramidal algorithm. 3. For the case of progressive transmittion where requires most grateful image reconstruction from least number of sampls or reconstruction at any target rate, I embedded the data in order of significance after scaling to 5 step. 4. Medical images such as information loss is fatal have to be compressed by lossless method. As a result from compressing 5 scaled data through arithmetic coding and Huffman coding, I obtained that arithmetic coding is better than huffman coding in processing time and compression ratio. And in case of arithmetic coding I could compress to 38% to original image data.

  • PDF

Pyramidal Deep Neural Networks for the Accurate Segmentation and Counting of Cells in Microscopy Data

  • Vununu, Caleb;Kang, Kyung-Won;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.3
    • /
    • pp.335-348
    • /
    • 2019
  • Cell segmentation and counting represent one of the most important tasks required in order to provide an exhaustive understanding of biological images. Conventional features suffer the lack of spatial consistency by causing the joining of the cells and, thus, complicating the cell counting task. We propose, in this work, a cascade of networks that take as inputs different versions of the original image. After constructing a Gaussian pyramid representation of the microscopy data, the inputs of different size and spatial resolution are given to a cascade of deep convolutional autoencoders whose task is to reconstruct the segmentation mask. The coarse masks obtained from the different networks are summed up in order to provide the final mask. The principal and main contribution of this work is to propose a novel method for the cell counting. Unlike the majority of the methods that use the obtained segmentation mask as the prior information for counting, we propose to utilize the hidden latent representations, often called the high-level features, as the inputs of a neural network based regressor. While the segmentation part of our method performs as good as the conventional deep learning methods, the proposed cell counting approach outperforms the state-of-the-art methods.

A Multi Resolution Based Guided Filter Using Fuzzy Logic for X-Ray Medical Images (방사선 의료영상 잡음제거를 위한 퍼지논리 활용 다해상도 기반 유도필터)

  • Ko, Seung-Hyun;Pant, Suresh Raj;Lee, Joonwhoan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.372-378
    • /
    • 2014
  • Noise in biomedical X-ray image degrades the quality so that it might causes to decrease the accuracy of diagnosis. Especially the noise reduction techniques is quite essential for low-dose biomedical X-ray images obtained from low radiation power in order to protect patients, because their noise level is usually high to well discriminate objects. This paper proposes an efficient method to remove the noise in low-dose X-ray images while preserving the edges with diverse resolutions. In the proposed method, a noisy image is at first decomposed into several images with different resolutions in pyramidal representation, then the stable map of edge confidence is obtained from each of analyzed image using a fuzzy logic-based edge detector. This map is used to adaptively determine the parameter for guided filters, which eliminate the noise while preserving edges in the corresponding image. The filtered images in the pyramid are extended and synthesized into a resulted image using interpolation technique. The superiority of proposed method compared to the median, bilateral, and guided filters has been experimentally shown in terms of noise removal and edge preserving properties.

A Hierarchical Stereo Matching Algorithm Using Wavelet Representation (웨이브릿 변환을 이용한 계층적 스테레오 정합)

  • 김영석;이준재;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.74-86
    • /
    • 1994
  • In this paper a hierarchical stereo matching algorithm to obtain the disparity in wavelet transformed domain by using locally adaptive window and weights is proposed. The pyramidal structure obtained by wavelet transform is used to solve the loss of information which the conventional Gaussian or Laplacian pyramid have. The wavelet transformed images are decomposed into the blurred image the horizontal edges the vertical edges and the diagonal edges. The similarity between each wavelet channel of left and right image determines the relative importance of each primitive and make the algorithm perform the area-based and feature-based matching adaptively. The wavelet transform can extract the features that have the dense resolution as well as can avoid the duplication or loss of information. Meanwhile the variable window that needs to obtain precise and stable estimation of correspondense is decided adaptively from the disparities estimated in coarse resolution and LL(low-low) channel of wavelet transformed stereo image. Also a new relaxation algorithm that can reduce the false match without the blurring of the disparity edge is proposed. The experimental results for various images show that the proposed algorithm has good perfpormance even if the images used in experiments have the unfavorable conditions.

  • PDF