• Title/Summary/Keyword: Push-out Test

Search Result 207, Processing Time 0.019 seconds

Experimental and numerical study on static behavior of grouped large-headed studs embedded in UHPC

  • Hu, Yuqing;Zhao, Guotang;He, Zhiqi;Qi, Jianan;Wang, Jingquan
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.103-118
    • /
    • 2020
  • The static behavior of grouped large-headed studs (d = 30 mm) embedded in ultra-high performance concrete (UHPC) was investigated by conducting push-out tests and numerical analysis. In the push-out test, no splitting cracks were found in the UHPC slab, and the shank failure control the shear capacity, indicating the large-headed stud matches well with the mechanical properties of UHPC. Besides, it is found that the shear resistance of the stud embedded in UHPC is 11.4% higher than that embedded in normal strength concrete, indicating that the shear resistance was improved. Regarding the numerical analysis, the parametric study was conducted to investigate the influence of the concrete strength, aspect ratio of stud, stud diameter, and the spacing of stud in the direction of shear force on the shear performance of the large-headed stud. It is found that the stud diameter and stud spacing have an obvious influence on the shear resistance. Based on the test and numerical analysis results, a formula was established to predict the load-slip relationship. The comparison indicates that the predicted results agree well with the test results. To accurately predict the shear resistance of the stud embedded in UHPC, a design equation for shear strength is proposed. The ratio of the calculation results to the test results is 0.99.

Composite Behavior of Perfobond Rib Shear Connector for Steel-concrete Decks (강-콘크리트 합성 바닥판용 전단연결재의 합성 거동 연구)

  • Kim, Hyeong-Yeol;Koo, Hyun-Bon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.91-97
    • /
    • 2006
  • This paper presents the results of push-out test conducted for the perfobond rib shear connectors welded onto steel-concrete composite deck. Push-out test specimen consists of profiled steel sheeting, perfobond rib, reinforcement, and concrete. To provide longitudinal shear resistance between the profiled sheeting and the concrete, perfobond rib with a number of holes was used. The parameters considered in the design of perfobond rib were the spacing and location of holes, and effect of reinforcing bars placed in the holes. To validate the effectiveness of the proposed system, twelve specimens were fabricated and tested. Although the scope of test was limited in nature, the results of test have shown that the perfobond ribs can be effectively used for shear connection in the steel-concrete composite decks.

Shear Resistance of BESTOBEAM Shear Connector According to the Length (BESTOBEAM 전단연결재의 길이에 따른 전단 내력 평가)

  • Ahn, Hyung Joon;Jung, In Yong;Kim, Young Ju;Hwang, Jae Sun
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.483-491
    • /
    • 2015
  • Shear resistance of BESTOBEAM, which has angle as shear connector and was developed with purpose of easy construction, was tested. With the test results shear resistance design equation was proposed. Unlike angle connector of Eurocode 4, BESTO BEMA shear connector behaves like fixed-end beam. Therefor longer span of the shear connector the lower shear resistance it has. As a result, shear resistance of BESTOBEAM shear connector according to its length tends to decrease as its length gets longer. The authors proposed design equation of angle shear connector sased on the test results. The results from the test and the proposed equation match within 10% error range. Therefore the proposed equation can be used for designing shear connector of BESTOBEAM.

Shear Resistance Evaluation of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 전단내력 평가)

  • Shin, Hyun-Seop;Park, Ki-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5290-5298
    • /
    • 2013
  • In order to apply a mechanical deck joint to the prefabricated steel grid composite decks, shear resistance of a joint composed of concrete shear key and high-tension bolt is experimentally evaluated by the push-out test. Shear resistance evaluated by the test is compared with resistance estimated by empirical and design equations based on the shear friction theory. Test results show that joint specimens bonded by epoxy have about 10% more shear resistance than specimens with strengthened shear key by steel plates, but in the case of specimens with strengthened shear key there is smaller resistance deviation than specimens bonded by epoxy. In comparison with resistances estimated by empirical and design equations, the deck joint can be safely designed. But because the existed shear resistance of deck joint is underestimated by the ACI-318, application of the LRFD design equation could be more reasonable.

Determination of shear stiffness for headed-stud shear connectors using energy balance approach

  • Ye, Huawen;Huang, Ruosen;Tang, Shiqing;Zhou, Yu;Liu, Jilin
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.477-487
    • /
    • 2022
  • The shear stiffness of headed-stud shear connectors has no unified definition due to the nonlinear characteristics of its load-slip relationship. A unified framework was firstly adopted to develop a general expression of shear load-slip equation for headed-stud shear connectors varying in a large parameter range based on both force and energy balance. The pre- and post-yield shear stiffness were then determined through bilinear idealization of proposed shear load-slip equation. An updated and carefully selected push-out test database of 157 stud shear connectors, conducting on studs 13~30mm in diameter and on concretes 30~180 MPa in cubic compressive strength, was used for model regression and sensitivity analysis of shear stiffness. An empirical calculation model was also established for the stud shear stiffness. Compared with the previous models through statistical analysis, the proposed model demonstrates a better performance to predict the shear load-slip response and stiffness of the stud shear connectors.

Numerical analysis of large stud shear connector embedded in HFRC

  • He, Yu Liang;Zhang, Chong;Wang, Li Chao;Yang, Ying;Xiang, Yi Qiang
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.595-608
    • /
    • 2021
  • To investigate the mechanical behavior of large stud shear connector embedded in hybrid fiber-reinforced concrete (HFRC), a refined 3D nonlinear finite element (FE) model incorporating the constitutive model of HFRC was developed using ANSYS. Firstly, the test results conducted by the authors (He et al. 2017) were used to validate FE model of push out tests. Secondly, a total of 27 specimens were analyzed with various parameters including fiber volume fractions of HFRC, diameter of studs and HFRC strength. Finally, an empirical equation considering the contribution of steel fiber (SF) and polypropylene fiber (PF) was recommended to estimate the ultimate capacity of large stud shear connector embedded in HFRC.

Push-out resistance of concrete-filled spiral-welded mild-steel and stainless-steel tubes

  • Loke, Chi K.;Gunawardena, Yasoja K.R.;Aslani, Farhad;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.823-836
    • /
    • 2019
  • Spiral welded tubes (SWTs) are fabricated by helically bending a steel plate and welding the resulting abutting edges. The cost-effectiveness of concrete-filled steel tube (CFST) columns can be enhanced by utilising such SWTs rather than the more conventional longitudinal seam welded tubes. Even though the steel-concrete interface bond strength of such concrete-filled spiral-welded steel tubes (CF-SWSTs) is an important consideration in relation to ensuring composite behaviour of such elements, especially at connections, it has not been investigated in detail to date. CF-SWSTs warrant separate consideration of their bond behaviour to CFSTs of other tube types due to the distinct weld seam geometry and fabrication induced surface imperfection patterns of SWTs. To address this research gap, axial push-out tests on forty CF-SWSTs were carried out where the effects of tube material, outside diameter (D), outside diameter to wall thickness (D/t), length of the steel-concrete interface (L) and concrete strength grade (f'c) were investigated. D, D/t and L/D values in the range 102-305 mm, 51-152.5 and 1.8-5.9 were considered while two nominal concrete grades, 20 MPa and 50 MPa, were used for the tests. The test results showed that the push-out bond strengths of CF-SWSTs of both mild-steel and stainless-steel were either similar to or greater than those of comparable CFSTs of other tube types. The bond strengths obtained experimentally for the tested CF-SWSTs, irrespective of the tube material type, were found to be well predicted by the guidelines contained in AISC-360.

A Study on Out-of-Plane Flexural Behavior of the Structure with a Vertical Plane Connection between a Reinforced Concrete Wall and a Steel Plate Concrete Wall (철근 콘크리트 벽과 강판 콘크리트 벽이 수직으로 만나는 이질접합 구조물의 면외 휨 거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Hahm, Kyung Won;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • This paper describes the experimental study on the structural behavior of the vertical plane connection between a reinforced concrete wall and a steel plate concrete wall under out-of-plane flexural loads. The specimen was tested under a dynamic test with the use of cyclic loads. As a result of the test, ductile failure mode of vertical bars was shown under a push load and the failure load was more than that of the nominal strength of the specimen. However, the shear failure mode of the connection was confirmed in case of a pull test and thus demonstrates a need for a shear reinforcement.

Push-out tests and bond strength of rectangular CFST columns

  • Qu, Xiushu;Chen, Zhihua;Nethercot, David A.;Gardner, Leroy;Theofanous, Marios
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.21-41
    • /
    • 2015
  • Push-out tests have been conducted on 18 rectangular concrete-filled steel tubular (CFST) columns with the aim of studying the bond behaviour between the steel tube and the concrete infill. The obtained load-slip response and the distribution of the interface bond stress along the member length and around the cross-section for various load levels, as derived from measured axial strain gradients in the steel tube, are reported. Concrete compressive strength, interface length, cross-sectional dimensions and different interface conditions were varied to assess their effect on the ultimate bond stress. The test results indicate that lubricating the steel-concrete interface always had a significant adverse effect on the interface bond strength. Among the other variables considered, concrete compressive strength and cross-section size were found to have a pronounced effect on the bond strength of non-lubricated specimens for the range of cross-section geometries considered, which is not reflected in the European structural design code for composite structures, EN 1994-1-1 (2004). Finally, based on nonlinear regression of the test data generated in the present study, supplemented by additional data obtained from the literature, an empirical equation has been proposed for predicting the average ultimate bond strength for SHS and RHS filled with normal strength concrete.

The effect of different adhesive system applications on push-out bond strengths of glass fiber posts

  • Kivanc, Bagdagul Helvacioglu;Arisu, Hacer Deniz;Uctasli, Mine Betul;Okay, Tufan Can
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.305-311
    • /
    • 2013
  • PURPOSE. Over the past years, the adhesion of fiber posts luted with simplified adhesive systems has been a matter of great interest. The aim of this study was to assess the post retentive potential of a self-adhesive resin cement using different adhesive systems to compare the push-out bond strengths of fiber posts. MATERIALS AND METHODS. The post spaces of 56 mandibular premolar roots were prepared and divided into 4 experimental groups and further divided into 2 subgroups according to testing time (n=7). The fiber posts (Rely X Fiber Post) were luted with a self-adhesive resin cement (RelyX Unicem) and one of the following adhesive systems: no adhesive, a total-etch adhesive resin (Single Bond), a two-step self-etch adhesive resin (Clearfil SE Bond) and a one-step self-etch adhesive resin (Clearfil S3 Bond). Each root was cut horizontally, and 1.5 mm thick six root segments were prepared. Push-out tests were performed after one week or three months (0.5 mm/min). Statistical analysis were performed with three-way ANOVA (${\alpha}$=.05). RESULTS. Cervical root segments showed higher bond strength values than middle segments. Adhesive application increased the bond strength. For one week group, the total-etch adhesive resin Single Bond showed higher bond strength than the self-adhesive resin cement RelyX Unicem applied without adhesive resin at middle region. For 3 months group, the two-step self-etch adhesive resin Clearfil SE Bond showed the highest bond strength for both regions. Regarding the time considered, Clearfil SE Bond 3 months group showed higher bond strength values than one week group. CONCLUSION. Using the adhesive resins in combination with the self-adhesive resin cement improves the bond strengths. The bond strength values of two-step self-etch adhesive resin Clearfil SE Bond improved as time passes.