• Title/Summary/Keyword: Push force

Search Result 148, Processing Time 0.031 seconds

Computational Study on Unsteady Aerodynamic Loads on Crossing Train (교행하는 고속전철의 비정상 공기력에 대한 수치적 연구)

  • Hwang, Jae-Ho;Lee, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.599-604
    • /
    • 2000
  • In order to study unsteady aerodynamic loads on high speed trains passing by each other at the speed of 350km/h, three-dimensional flow fields around trains during the crossing event are numerically simulated using the three-dimensional Euler equations. The Roe's FDS with MUSCL interpolation is employed to simulate wave phenomena properly. An efficient moving grid system based on domain decomposition techniques is developed to analyze the unsteady flow field induced by the restricted motion of a train on a rail. The numerical simulations of the trains passing by on the double-track are carried out to study the effect of the train nose-shape, the train length and the existence of tunnel when the crossing event occur. Unsteady aerodynamic loads side force and drag force-acting on the train during the crossing are numerically predicted and anlayzed. It is found that the strength of the side force mainly depends on the nose-shape, and that of drag force on tunnel existence. And it is observed that the push-pull like impulsive force successively acts on each car and acts in different directions between the neighborhood cars. The maximum change of the impulsive force reaches about 3 tons. These aerodynamic force data are absolutely necessary for the evaluation of the stability of the high speed multi-car train. The results also indicate the effectiveness of the present numerical method for the simulation of unsteady flow field induced by the bodies in the relative motion.

  • PDF

Relationship between 3D Ground Reaction Force and Leg Length Discrepancy during Gait among Standing Workers

  • Kim, Yong-Wook
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.59-66
    • /
    • 2022
  • Purpose: The aim of this research was to verify the relationship between three-dimensional (3D) ground reaction force (GRF) and severity of leg length discrepancy (LLD) while walking at a normal speed. It used a 3D motion analysis system with force platforms in standing workers with LLD. Methods: Subjects comprising 45 standing workers with LLD were selected. Two force platforms were used to acquire 3D GRF data based on a motion analysis system during gait. Vicon Nexus and Visual3D v6 Professional software were used to analyze kinetic GRF data. The subjects were asked to walk on a walkway with 40 infrared reflective markers attached to their lower extremities to collect 3D GRF data. Results: The results indicated the maximal force in the posterior and lateral direction of the long limb occurring in the early stance phase during gait had significant positive correlation with LLD severity (r = 0.664~0.738, p <0.01). In addition, the maximal force medial direction of the long limb occurring in the late stance phase showed a highly positive correlation with the LLD measurement (r = 0.527, p <0.01). Conclusion: Our results indicate that greater measured LLD severity results in more plantar pressure occurring in the foot area during heel contact to loading response of the stance phase and the stance push-off period during gait.

The effects of push factors on transition into self-employment across age groups - Focusing on push hypothesis and pull hypothesis - (경기변동이 자영업이행에 미치는 영향의 연령집단별 차이 -구축가설과 유인가설을 중심으로-)

  • Ji, Eun Jeong
    • Korean Journal of Social Welfare Studies
    • /
    • v.43 no.2
    • /
    • pp.141-178
    • /
    • 2012
  • Although the rate of self-employment is high in Korean labor market and the rate gap between age groups is high, few studies have addressed on the effects of push factors on transition into self-employment across age groups. The goal of this research is to determine if push factors exert different effects on the self-employment decisions across age groups. There is interest in testing push hypothesis and pull hypothesis. The Korean Labor and Income Panel Study wave 6~11 is used to test this study's hypothesis. The main contribution of the paper is that in case of high unemployment, the probability of transition into self-employment increases. It is consistent with the push hypothesis. Many people are forced to become self-employed person due to the high rate of unemployment and limited occupational choice rather than the role of entrepreneurship. By age subgroup, the transition into self-employment of the ages of 30 and 49 is high. In addition, people at 40-49 years of age are more likely to become self-employed as a response of inadequate job opportunities. It provides the evidence that the self-employment is not a matter of special age group in that people in the 30 to 49 year old age group whose economic activities are vigorous move into marginalized labor market. Furthermore, it seems to be threatened the employment's stability of the prime age in that even people who are age 40-49 years of age are pushed into self-employment because of the recession.

Comparative Evaluation of Reproducibility of Knee Joint Collateral Ligament Stress-radiogram Using Telometer (Telometer를 이용한 슬관절 측부인대 Stress-radiogram의 재현성 비교평가)

  • Jeong, Jin-Man;Jeong, Seong-Bin;Kim, Sang-Hyun;Lee, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.539-543
    • /
    • 2018
  • Telometer is a supplementary filming device that improves the image quality and minimizes the motion unsharpness by enhancing the reproducibility of diagnostic images because it applies constant pressure (force) to the affected area. The stress-radiogram which is widely used to provide the o-bjective quantitative stability of knee ligament is reported in literature as the most suitable method to evaluate the stability of ligament and it is advised to use the Telometer. In order to evaluate the image reproducibility of the Telometer, the collateral ligament which is the most vulnerable among the ligaments consisting of the knee joint, the stress-radiogram was executed in the order of the Telometer, the push pull gauge and the conventional stress radiogram. Then, SPSS (Statistical Package for the Social Science) for Windows 22.0 was used for comparison and evaluation. According to the results of comparison and evaluation, the standard errors and standard deviations became smaller in the order of the Telometer, the push pull gauge, the conventional stress radiogram while the image reproducibility was higher in the order of the Telometer, the push pull gauge, the conventional stress radiogram. Therefore, it is considered that the use of the TELOS for stress-radiogram would enhance the quality of patient diagnostic images and the work performance of radiologists.

Static behavior of high strength friction-grip bolt shear connectors in composite beams

  • Xing, Ying;Liu, Yanbin;Shi, Caijun;Wang, Zhipeng;Guo, Qi;Jiao, Jinfeng
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.407-426
    • /
    • 2022
  • Superior to traditional welded studs, high strength friction-grip bolted shear connectors facilitate the assembling and demounting of the composite members, which maximizes the potential for efficiency in the construction and retrofitting of new and old structures respectively. Hence, it is necessary to investigate the structural properties of high strength friction-grip bolts used in steel concrete composite beams. By means of push-out tests, an experimental study was conducted on post-installed high strength friction-grip bolts, considering the effects of different bolt size, concrete strength, bolt tensile strength and bolt pretension. The test results showed that bolt shear fracture was the dominant failure mode of all specimens. Based on the load-slip curves, uplifting curves and bolt tensile force curves between the precast concrete slab and steel beam obtained by push-out tests, the anti-slip performance of steel-concrete interface and shear behavior of bolt shank were studied, including the quantitative analysis of anti-slip load, and anti-slip stiffness, frictional coefficient, shear stiffness of bolt shank and ultimate shear capacity. Meanwhile, the interfacial anti-slip stiffness and shear stiffness of bolt shank were defined reasonably. In addition, a total of 56 push-out finite element models verified by the experimental results were also developed, and used to conduct parametric analyses for investigating the shear behavior of high-strength bolted shear connectors in steel-concrete composite beams. Finally, on ground of the test results and finite element simulation analysis, a new design formula for predicting shear capacity was proposed by nonlinear fitting, considering the bolt diameter, concrete strength and bolt tensile strength. Comparison of the calculated value from proposed formula and test results given in the relevant references indicated that the proposed formulas can give a reasonable prediction.

Nanoparticle Manipulation Using Atomic Force Microscope and X-Y Stage

  • Liu, T.S.;Wen, B.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1542-1546
    • /
    • 2003
  • Nanotechnology is an important challenge, for which nanoparticle manipulation plays an important role in the assembly of nano elements. In this study, the dynamic equation of system plant is established by van der Waals force, friction, capillary forces etc. To push nanoparticles, strain gauges are used as sensors to actuate an X-Y stage in an atomic force microscopy system. A strategy of pushing nanoparticles is developed based on sliding mode control. Moreover, afuzzy controller is responsible for compensating tip-particle contact loss according to feedback signals of a laser-detector system. According to position control result, experimental results of gold nanoparticle manipulation are presented.

  • PDF

Feasibility Assessment of New Hybrid Linear Motor Using Magnetostrictive Material

  • Kim, Jaehwan;Doo, Jae-Kyun;Kim, Jae-Do
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.26-30
    • /
    • 2001
  • This paper deals with the feasibility assessment of hybrid linear motor that operates based on self-moving cell concept. The moving cell is composed of Magnetostrictive actuator and a ring structure, and a cell train is constructed by connecting two cells in series. Since this motor uses strong push force of Terfenol-D actuators and friction of the cells, it can essentially produce long stroke and large force. The overall performance of the motor was measured in terms of speed and force.

  • PDF

Static Behavior of Steel-Concrete Composite Beam with Perfobond Rib Shear Connector (Perfobond rib 전단연결재가 설치된 강.콘크리트 합성보의 정적거동)

  • Ahn, Jin Hee;Chung, Hamin;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.421-432
    • /
    • 2009
  • In this study, push-out and static loading tests were conducted to evaluate the behavioral characteristics of composite beams with a perfobond rib shear connector. The shear capacity of the perfobond rib was found to be proportional to its concrete strength, which is in turn affected by the increase in the concrete end-bearing strength and concrete dowel action to resist the shear force. The relative slips of the push-out specimen, however, which was used to assess the ductility of the shear connector, increased to some extent, but it no longer increased when it reached the critical concrete strength because of the flexibility of the transverse rebar in the rib hole. The static-loading-test results revealed a crack on the concrete slab in the composite beam with a perfobond rib on the side of the rib hole and transverse rebar for the applied moment and shear force to the rib hole, depending on the static loading. The shear resistance characteristics of the perfobond rib shear connector were found to resist the shear force from the relative slip on the interface of the composite beam. Thus, the sectional effect of the shear connector to the composite beam with a perfobond rib should be considered when designing the composite beam because the behavior of the composite beam can change owing to the shear connector.

Effect of Rehabilitation Exercise for Golfers on the X-factor and Ground Reaction Force according to Phase of the Golf Swing

  • yoon, Junggyu;Cho, Byungyun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.1
    • /
    • pp.1706-1710
    • /
    • 2019
  • Background: Despite frequent shoulder injuries of rotator cuff muscle of golfers by the result of overuse and poor swing mechanics, there is little research on shoulder specific rehabilitation exercises for injured rotator cuff muscle and golf swing Objective: To examined the effect of rehabilitation exercise for golfers on the X factor and ground reaction force (GRF) according to phase of the golf swing. Design: Crossover study Methods: The participants were 13 amateur golfers selected for a 4 week rehabilitation exercise for golfers. A rehabilitation exercise for golfers consisting of 5 steps and 4 items (sleeper stretch, full side plank, push up to plank, high plank knee unders) were applied to all participants. A three dimensional motion analyzer and force platform (SMART-E, BTS, Italy) were used to measure the X factor (angle between shoulder and pelvis at top of back swing) and GRF according to phase of the golf swing. All dependent variables were measured before and after exercise. The collected data was analyzed using the paired t test and SPSS 21.0. Results: The GRF had a statistically significant increase in the impact phase and ratio impact/weight after rehabilitation exercise for golfers (p<.05). The X-factor, GRF in top of back swing and finish were no significant differences between before and after exercise (p>.05). Conclusions: These results suggested that rehabilitation exercise for golfers was effective for increasing GRF in the impact phase and ratio impact/weight for amateur golfer.

Fast and Safe Contact Establishment Strategy for Biped Walking Robot (이족 보행 로봇을 위한 빠르고 안전한 접촉 생성 전략)

  • Lee, Hosang;Jung, Jaesug;Ahn, Junewhee;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.147-154
    • /
    • 2021
  • One of the most challenging issues when robots interact with the environment is to establish contact quickly and avoid high impact force at the same time. The proposed method implements the passive suspension system using the redundancy of the torque-controlled robot. Instead of utilizing the actual mechanical compliance, the distal joints near the end-effector are controlled to act as a virtual spring-damper system with low feedback gains. The proximal joints are precisely controlled to push the mid-link, which is defined as the boundary link between the proximal and distal joints, towards the environment with high feedback gains. Compared to the active compliance methods, the contact force measurements or estimates are not required for contact establishment and the control time delay problems do not occur correspondingly. The proposed method was applied to the landing foot control of the 12-DoF biped robot DYROS-RED in the simulations. In the results, the impact force during landing was significantly reduced at the same collision speed.