• Title/Summary/Keyword: Purine-N

Search Result 78, Processing Time 0.027 seconds

Studies on Milk Allantoin and Uric Acid in Relation to Feeding Regimens and Production Performance in Buffaloes

  • Sikka, P.;Saxena, N.K.;Gupta, R.;Sethi, R.K.;Lall, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1634-1637
    • /
    • 2001
  • Allantoin and uric acid were estimated in milk to study the association between the levels of these purine derivatives and milk production per day under given feeding regimens. Keeping the stage of lactation, parity and initial milk yield in view thirty lactating buffaloes were randomly selected from early lactating group. All the animals were fed 30 kg green, 2 kg straw and 5 kg concentrate mixture on per animal/day basis at basal level up to 8 1 produce. 1 kg concentrate mixture, soaked cotton seed and boiled cotton seed was fed for every 2 I milk, respectively in Group I (control), Group II and Group III animals. Average milk Allantoin and Uric acid levels were $120{\pm}11.7g/ml$ and $4.03{\pm}0.63g/ml$, respectively in milk. Cotton seed feeding enhanced the milk production significantly (p<0.01) in comparison to concentrate mixture fed control group animals. A significant difference (p<0.01) in milk allantoin levels was found over the different feeding management at higher level of production group animals. Study also revealed a significant negative correlation between the milk allantoin and production per day r=-0.43 (p<0.05).

Rpn10p is a Receptor for Ubiquitinated Gcn4p in Proteasomal Proteolysis

  • Seong, Ki Moon;Baek, Je-Hyun;Ahn, Byung-Yoon;Yu, Myeong-Hee;Kim, Joon
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.194-199
    • /
    • 2007
  • GCN4 is a typical eukaryotic transcriptional activator that is implicated in the expression of many genes involved in amino acids and purine biosyntheses under stress conditions. It is degraded by 26S proteasomes following ubiquitination. However, the immediate receptor for ubiquitinated Gcn4p has not yet been identified. We investigated whether ubiquitinated Gcn4p binds directly to Rpn10p as the ubiquitinated substrate receptor of the 26S proteasome. We found that the level of Gcn4p increased in cells deleted for Rpn10p but not in cells deleted for RAD23 and DSK2, the other ubiquitinated substrate receptors and, unlike Rpn10p, neither of these proteins recognized ubiquitinated Gcn4p. These results suggest that Rpn10p is the receptor that binds the polyubiquitin chain during ubiquitin-dependent proteolysis of Gcn4p.

Effect of Graded Levels of Rice Mill Feed (RMF) Supplementation on Intake, Nutrient Digestibility, Microbial N Yield and Growth Rate of Native (Bos Indicus) Bulls Fed Rice Straw Alone

  • Chowdhury, S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.5
    • /
    • pp.445-454
    • /
    • 1997
  • Rice bran commonly available in Bangladesh is a mixture of rice hulls (60%), bran (35%) and polishing (5%), referred here as rice mill feed (RMF). Dose response effect of RMF supplementation to a straw diet including a zero level was measured on the intake, digestibility, nitrogen balance, microbial N yield and growth rate of growing native (Bos indicus) bulls. Twelve bulls of 33 months old and $272{\pm}31.5kg$ weight were randomly allocated to diets having 0 (T1), 1 (T2) and 2 (T3) kg RMF in addition to 200 g wheat bran, 200 g molasses, 60 g salt and 30 g oyestershe\l powder. Concentrate intake was 5.5, 19.2 and 29.5% of the dietary intake for the T1, T2 and T3 treatment respectively. RMF supplementation had no significant effect on the straw DM intake. However, with the increasing levels of RMF supplementation, total DM & digestible OM intake and the whole gut digestibilities of DM, OM, N & ADF increased but in deminishig return. Total microbial N yield estimated from the urinary purine excretion were 15.35, 26.56 and 38.44 g/d for the treatment T1, T2 and T3 respectively. Both the N intake and the N balance increased linearly in response to increasing level of RMF. Supplementation of RMF linearly increased the energy intake and dietary energy concentration. Growth rate in the T1, T2 and T3 treatments were 112, 125 and 250 g/d respctively. The basal N excretion and the maintenance energy requirement of the experimental animals were estimated to be 615 mg/kg $W^{0.75}/d$ and 447 kJ/kg $W^{0.75}/d$ respectively. The estimated efficiency on N utilization was 0.83 mg/mg of N intake ($r^2=0.997$) while the efficiency of metabolizable energy utilization for growth was 0.15. Since animal refused higher levels of RMF, inclusion up to 2 kg level (about 25% of the total DM intake) appears to have no depressing effect on the performances of animal. However, RMF itself fail to meet the critical nutrient need of the rumen microbes. Therefore response of supplementing RMF after correcting the critical nutrient deficiency need to be studied.

Non-traditional Straws: Alternate Feedstuffs for Ruminants

  • Kaushal, S.;Wadhwa, M.;Bakshi, M.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1722-1727
    • /
    • 2006
  • The nutritive value of 4 straws, obtained after thrashing of seeds from fodder crops, was assessed as complete feed for ruminants. Sixteen male Murrah buffaloes (liveweight 365.8${\pm}$19.5 kg), were divided into 4 equal groups and offered ad lib. straw of either Trifolium resupinatum, Trifolium alexandrium, Medicago sativa or Lolium perenne, supplemented with minerals and vitamin A, for 40 days in a completely randomized design. Simultaneously, each straw was offered to 3 rumen fistulated male buffaloes in order to assess the biochemical changes in the rumen. Compared to other straws M. sativa straw had higher (p<0.05) organic matter (OM), crude protein (CP), acid-detergent fiber (ADF) and cellulose content. L .perenne had the highest (p<0.05) hemicellulose and lowest (p<0.05) CP and acid-detergent lignin (ADL) content. T. resupinatum had the lowest concentration of cell wall constituents (CWC). The digestibility of nutrients of T. resupinatum and L. perenne straw was similar, but higher (p<0.05) than that of other straws. M.sativa straw showed highest (p<0.05) digestibility of CP. The highest OM digestibility of T. resupinatum and CP digestibility of M. sativa were responsible for highest (p<0.05) total volatile fatty acids and trichloroacetic acid precipitable nitrogen in the strained rumen liquor. The digestible crude protein (DCP) was highest (p<0.05) in M. sativa followed by that in T. alexandrium. The total purine derivatives excreted in urine varied from 0.22-0.32 mmol/kg $W^{.75}/d$. The efficiency of microbial protein synthesis indicated that OM of straws of M. sativa and that of T. alexandrium was used more (p<0.05) efficiently. The microbial protein synthesized was highest in T. resupinatum, but statistically similar to other groups. The values for N-retention and apparent biological value were highest for L. perenne, though comparable with that of M. sativa and T. alexandrium. The available metabolizable energy (ME) was highest (p<0.05) in T. resupinatum followed by that in L. perenne and lowest in M. sativa. It was concluded that all the straws, supplemented with minerals and vitamin A, could be fed exclusively to adult ruminants with no adverse affect, as animals were able to maintain body weight (372${\pm}$20.1 kg).

Depurination of Nucleosides and Calf Thymus DNA Induced by 2-Bromopropane at the Physiological Condition

  • Sherchan, Jyoti;Choi, Ho-Young;Lee, Eung-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2309-2317
    • /
    • 2009
  • Depurination, the release of purine bases from nucleic acids by hydrolysis of the N-glycosidic bond, gives rise to alterations of the cell genome. Though cells have evolved mechanisms to repair these lesions, unrepaired apurinic sites have been shown to have two biological consequences: lethality and base substitution errors. 2-Bromopropane (2-BP) is used as an intermediate in the synthesis of pharmaceuticals, dyes, and other organics. In addition, 2-BP has been used as a replacement for chloroflurocarbons and 1,1,1-trichloroethane as a cleaning solvent in electronics industry. However, 2-BP was found to cause reproductive and hematopoietic disorders in local workers exposed to it. Owing to the toxicity of 2-BP, there has been a tendency to use 1-BP as an alternative cleaning solvent to 2-BP. However, 1-BP has also been reported to be neurotoxic in rats. Though $N^7$-guanine adduct of 2-BP has been reported previously, massive depurination of the nucleosides and calf thymus DNA was observed in this study. We incubated the nucleosides (ddG, dG, guanosine, ddA, dA and adenosine) with excess amount 2-BP at the physiological condition (pH 7.4, $37\;{^{\circ}C}$), which were analyzed by HPLC and LC-MS/MS. In addition, the time and dose response relationship of depurination in nucleosides induced by 2-bromopropane at the physiological condition was investigated. Similarly, incubation of calf-thymus DNA with the excess amount 2-BP at the physiological condition was also performed. In addition, the time and dose response relationship of depurination in calf-thymus DNA induced by 2-BP at the physiological condition was investigated. Those results suggest that the toxic effect of 2-BP could be both from the depurination of nucleosides and DNA adduct formation.

Effects of ruminally degradable starch levels on performance, nitrogen balance, and nutrient digestibility in dairy cows fed low corn-based starch diets

  • Luo, Guobin;Xu, Wenbin;Yang, Jinshan;Li, Yang;Zhang, Liyang;Wang, Yizhen;Lin, Cong;Zhang, Yonggen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.5
    • /
    • pp.653-659
    • /
    • 2017
  • Objective: This trial was performed to examine the effects of ruminally degradable starch (RDS) levels in total mixed ration (TMR) with low corn-based starch on the milk production, whole-tract nutrient digestibility and nitrogen balance in dairy cows. Methods: Eight multiparous Holstein cows (body weight [BW]: $717{\pm}63kg$; days in milk [DIM]: $169{\pm}29$) were assigned to a crossover design with two dietary treatments: a diet containing 62.3% ruminally degradable starch (% of total starch, low RDS) or 72.1% ruminally degradable starch (% of total starch, high RDS). Changes to the ruminally degradable levels were conducted by using either finely ground corn or steam-flaked corn as the starch component. Results: The results showed that dry matter intake, milk yield and composition in dairy cows were not affected by dietary treatments. The concentration of milk urea nitrogen was lower for cows fed high RDS TMR than low RDS TMR. The whole-tract apparent digestibility of neutral detergent fiber, acid detergent fiber and crude protein decreased, and that of starch increased for cows fed high RDS TMR over those fed low RDS TMR, with no dietary effect on the whole-tract apparent digestibility of dry matter and organic matter. The proportion of urinary N excretion in N intake was lower and that of fecal N excretion in N intake was higher for cows fed high RDS TMR than those fed low RDS TMR. The N secretion in milk and the retention of N were not influenced by the dietary treatments. Total purine derivative was similar in cows fed high RDS TMR and low RDS TMR. Consequently, estimated microbial N flow to the duodenum was similar in cows fed high RDS TMR and low RDS TMR. Conclusion: Results of this study show that ruminally degradable starch levels can influence whole-tract nutrient digestibility and nitrogen balance in dairy cows fed low corn-based starch diets, with no influence on performance.

Effect of Tannins in Acacia nilotica, Albizia procera and Sesbania acculeata Foliage Determined In vitro, In sacco, and In vivo

  • Alam, M.R.;Amin, M.R.;Kabir, A.K.M.A.;Moniruzzaman, M.;McNeill, D.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.220-228
    • /
    • 2007
  • The nutritive value and the effect of tannins on the utilization of foliage from three commonly used legumes, Acacia nilotica, Albizia procera, and Sesbania acculeata, were determined. Three mature rumen-fistulated bullocks were used to study in sacco degradability and twelve adult sheep were randomly allocated on the basis of live weight to 4 groups of 3 in each to study the in vivo digestibility of the foliages. In all foliages, the contents of crude protein (17 to 24% of DM) were high. Fibre was especially high in Albizia (NDF 58.8% of DM vs. 21% in Sesbania and 15.4% in Acacia). Contents of both hydrolysable (4.4 to 0.05%) and condensed tannins (1.2 to 0.04%) varied from medium to low in the foliages. Acacia contained the highest level of total phenolics (20.1%), protein precipitable phenolics (13.2%) and had the highest capacity to precipitate protein (14.7%). Drying in shade reduced the tannin content in Acacia and Albizia by 48.6 and 69.3% respectively. The foliages ranked similarly for each of the different methods used to estimate tannin content and activity. Acacia and Sesbania foliage was highly degradable (85-87% potential degradability of DM in sacco), compared to Albizia (52%), indicating a minimal effect of tannins in Acacia and Sesbania. Yet, in vitro, the tannins in the Acacia inhibited microbial activity more than those in Albizia and Sesbania. Following the addition of polyethylene glycol to neutralise the tannins, gas production and microbial growth increased by 59% and 0.09 mg RNA equiv./dg microbial yield respectively in the Acacia, compared to 16-17% and 0.06 mg RNA equiv./dg microbial yield in the other foliages. There was a trend for low in vivo apparent digestibility of N in the Acacia (43.2%) and Albizia (44.2%) compared to the Sesbania (54.5%) supplemented groups. This was likely to be due to presence of tannins. Consistent with this was the low N retention (0.22 and 0.19 g N/g NI) in sheep supplemented with Acacia and Albizia compared to that for the Sesbania (0.32). Similarly, a trend for poor microbial N yield was observed in sheep fed these foliages. Across the foliages tested, an increase in tannin content was associated with a reduction in ruminal fermentation, N digestibility and N retention. For overall nutritive value, Sesbania proved to be the superior forage of the three tested.

Expression of N-Methylpurine-DNA Glycosylase Gene during Fetal Development and Adult in Mice (생쥐 태아 및 성체 조직에서의 N-Methylpurine-DNA Glycosylase 유전자의 발현)

  • Sohn, Tae-Jong;Kim, Nam-Keun;Lee, Sook-Hwan;Han, Sei-Yul;Ko, Jung-Jae;Park, Chan;Lee, Woo-Sik;Lee, Chan;Lee, Yong-Hee;Cha, Kwang-Yul
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.101-105
    • /
    • 1999
  • N-Methylpurine-DNA glycosylase (MPG) removes N-methylpurine and other damaged purines in DNA. RT-PCR analysis revealed MPG mRNA expression at various tissues of fetal development from day 8 to day 18 fetus and day 400 mature adult. The MPG transcripts were abundant during fetal development in mice. In placenta, the MPG mRNA was continuously decreased from day 8 post coitum (p.c) to day 18 p.c. fetus. The high level of mRNA in fetal brain and liver was drastically declined in day 400 mature adult. The expression of MPG, originally characterized by its highest level of expression in the epididymis of adult mouse, was detected with high level in several other reproductive organ, including the ovary, oviduct, testis, vas deference, uterus, and seminal vesicles. These results demonstrate developmental stage- and tissue-specific variation of MPG gene expression.

  • PDF

Effect of Molasses or Rice Gruel Inclusion to Urea Supplemented Rice Straw on Its Intake, Nutrient Digestibilities, Microbial N Yield, N Balance and Growth Rate of Native (Bas indicus) Growing Bulls

  • Chowdhury, S.A.;Huque, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.2
    • /
    • pp.145-151
    • /
    • 1998
  • The possibility of using rice gruel compared to that of the cane molasses as a source of readily fermentable energy for a urea supplemented straw diet has been studied. Twelve native growing bulls of $237{\pm}8.7kg $ live weight and months old were randomly allocated to three treatments fed solely rice straw enriched with : (1) 3% urea (US), (2) 3% urea + 15% molasses (UMS) and (3) 3% urea + 30% rice gruel (UGS). The feeding trial continued for sixty days. Organic matter (OM) intake was significantly (p < 0.05) higher in the UMS ( $64g/kg\;W^{0.75}/d$) followed by UGS ($53g/kg\;W^{0.75}/d$) and US ($49g/kg\;W^{0.75}/d$). Estimated (from digestible OM intake) metabolizable energy (ME) intake were 396, 348 and $301kJ/kg\;W^{0.75}/d$ for UMS, UGS and US respectively. The maintenance (i.e., no change in live weight) ME intake calculated to be $308{\pm}7.4kJ/kg\;W^{0.75}/d$. Urinary purine derivatives excretion was nonsignificantly higher in the UMS (51.73 mmol/d), followed by UGS (42.53 mmol/d) and US (35.26 mmol/d). The estimated microbial N (MN) yield were 21.10, 14.00 and 11.60 g/d for UMS, UGS and US respectively. For each MJ increase in ME intade, MN yield increased by $1.29{\pm}0.134g$. Observed live weight changes during the experimental period were 292, 125 and -19 g/d respectively for UMS, UGS and US. It was concluded that supplementation of readily fermentable N (urea) alone was not enough to optimize the rumen function and a source of readily fermentable energy was required. Rice gruel was less effective than molasses as fermentable energy source to remove a restriction on voluntary intake and provide less amino acids of microbial origin for absorption from the small intestine, Thus more substrate for protein synthesis and gluconeogenesis were available for growth in the molasses than the rice gruel supplemented animals. However, in situation where molasses is not available or costly, rice gruel does appear to have a place as readily fermentable energy source on a urea supplemented straw diet.

Effects of Forage Sources on Rumen Fermentation Characteristics, Performance, and Microbial Protein Synthesis in Midlactation Cows

  • Xua, Jun;Houa, Yujie;Yang, Hongbo;Shi, Renhuang;Wu, Caixia;Huo, Yongjiu;Zhao, Guoqi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.667-673
    • /
    • 2014
  • Eight multiparous Holstein cows ($632{\pm}12$ kg BW; $135{\pm}16$ DIM) were used in a replicated $4{\times}4$ Latin square design to evaluate the effects of forage sources on rumen fermentation characteristics, performance, and microbial protein (MCP) synthesis. The forage portion of the diets contained alfalfa hay (AH), oat hay (OH), Leymus chinensis (LC), or rice straw (RS) as the primary source of fiber. Diets were isonitrogenous and isocaloric, and cows were fed four corn silages based total mixed rations with equivalent nonfiber carbohydrate (NFC) and forage neutral detergent fiber (NDF). Dry matter intake was not affected by the source of dietary forages, ranging from 18.83 to 19.20 kg/d, consequently, milk yield was similar among diets. Because of the numerical differences in milk fat and milk protein concentrations, 4% FCM and ECM yields were unchanged (p>0.05). Mean rumen pH, NH3-N content, and concentrations of volatile fatty acids in the rumen fluid were not affected by the treatments (p>0.05). Dietary treatments did not affect the total tract apparent digestibility of dry matter, organic matter, and crude protein (p>0.05); however, digestibility of NDF and acid detergent fiber in RS diet was higher compared with AH, OH, and LC diets (p<0.05). Total purine derivative excretion was higher in cows fed AH, OH, and LC diets compared with those fed RS diet (p<0.05), consequently, estimated MCP synthesis was 124.35 g/d higher in cows fed AH diet compared with those fed RS diet (p<0.05). The results indicated that cows fed AH, OH, LC, and RS diets with an equivalent forage NDF and NFC have no unfavourable effect on the ruminal fermentation and productive parameters.