• Title/Summary/Keyword: Purifying effects

Search Result 34, Processing Time 0.023 seconds

Effects of Purifying Rice Paddy in Reducing Nutrient Loadings from Rice Paddy fields area using Free Range Ducks and Rice Bran (정화논에 의한 벼 친환경재배단지 발생 영양염류 저감효과)

  • Ko, Jee-Yeon;Lee, Jae-Saeng;Woo, Koan-Sik;Seo, Myung-Chul;Kang, Jong-Rae;Song, Seok-Bo;Oh, Byeong-Gun;Jung, Ki-Yeol;Yun, Eul-Soo;Choi, Kyung-Jin;Nam, Min-Hee;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.132-139
    • /
    • 2010
  • To manage the effluent nutrients amounts from rice paddy fields using free range ducks or rice bran, we evaluated the effects of a purifying paddy field which is no fertilizer, no pesticides, and dense rice seedling having a concept of constructed wetland. The experimental paddy field was located at downstream in the watershed of ducks using rice culture area in Milyang. The purifying paddy of land design were treated with seeding method, and vegetation type. As land design, direct seeding on plane, and direct seeding on high-ridge field in 2007. Planting rice only, and planting rice with water hyacinth were treated as vegetation type in purifying paddy in 2008. The purifying paddy fields were effective to reduce amount of T-N and T-P contents in effluent to 33.2~45.3%, and 53.1~55.4%, respectively. The direct seeding on high-ridge treatment, having long residence time of effluent water was more effective than plane plot as T-N 0.29 $g^{-1}m^{-2}d^{-1}$, and T-P 0.031 $g^{-1}m^{-2}d^{-1}$. The planting rice with water hyacinth treatment was effective than planting rice only as T-N 0.23 $g^{-1}m^{-2}d^{-1}$, and T-P 0.049 $g^{-1}m^{-2}d^{-1}$. The optimum area of purifying paddy field to treats all effluent were found out 3.2~4.7% of rice culture area using free range ducks, and rice bran at upper stream.

Effects of Humidification with an Air Purifying Substance on Sick Building Syndrome Symptoms (공기청정용 가습액이 새집증후군 자각증상에 미치는 영향연구)

  • Lee, Yeunsook;Lee, Hyunjeong;Cho, Jiyeon;Lim, Jungeun
    • KIEAE Journal
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2005
  • Indoor air quality (IAQ) is recognized as a byproduct of industrialization that took place in the 20th century. The great attention to IAQ has been gained since 1980s, and led to numerous research studies that have mainly made in the developed countries. As the development of residential environment in Korea enters in the process of qualitative growth, IAQ has viewed as one of the core issues in the society, and research in relation to IAQ has been implemented until now in the fields of engineering and medical science. It is widely known that the sources and effects of indoor air pollution have been various, and IAQ research with multidisciplinary approaches is required. Nevertheless, few research embedded into a socio-behavioral approach to identifying interventive measures of residents and analyzing their choices is made. The purpose of this study is to examine the use of an interactive measure of residents in apartments that is air purification with phytoncide available in the market, and to investigate their self-reported effects of the air purifying substance on sick building syndrome symptoms. This study utilizes a field experiment design with pre-test and post-test, and the experiment is conducted in a natural field setting. A total of 87 test subjects from 32 households with already sick building syndrome are drawn via internet, and the participation is solely voluntary. The participants receive and use the air purifying substance, and are asked to use it continuously for two weeks and identify their self-reported symptoms of before- and after-use. The research findings indicate that air purification using phytoncide is effective to alleviate their symptoms in relation to sick building syndrome. Also it is noted that the participants report that the use of the air purification causes the positive impacts on their daily life. Further research is needed that compares the group with only humidifier and evaluates the mid-term and long-term use of the air purification and its effects.

The Fine Dust Reduction Effect and Operational Strategy of Vegetation Biofilters Based on Subway Station Passenger Volume (지하역사 내 승하차 인원에 따른 식생바이오필터의 미세먼지 저감효과와 운전전략)

  • Jae Young Lee;Ye Jin Kim;Mi Ju Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.13-18
    • /
    • 2023
  • A subway station is a prominent multi-purpose facility where the quantitative management of fine dust, generated by various factors, is conducted. Recently, eco-friendly air purification methods using air-purifying plants are being discussed, with the focus on biofiltration through vegetation. Previous research in this field has confirmed the reduction effects of transition metals such as Fe, which have been identified as harmful to human health. This study aimed to identify the sources of fine dust dispersion within subway stations and derive an efficient operational strategy for air-purifying plants that takes into account the behavior characteristics of fine dust within multi-purpose facilities. The experiment monitored regional fine dust levels through IAQ stations established based on prior research. Also, the data was analyzed through time-series and correlation analyses by linking it with passenger counts at subway stations and the frequency of train stops. Furthermore, to consider energy efficiency, we conducted component-specific power consumption monitoring. Through this study, we were able to derive the optimal operational strategy for air-purifying plants based on time-series comprehensive analysis data and confirm significant energy efficiency.

  • PDF

A Study on Particulate Matter Reduction Effects of Vegetation Bio-Filters by Airflow Volume (공조풍량별 식생바이오필터의 입자상 오염물질 저감효과 연구)

  • Choi, Boo Hun;Kim, Tae Han
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.89-95
    • /
    • 2021
  • As the influence of fine dust on society spreads gradually, the public's interest in indoor air is increasingly rising. Air-purifying plants are drawing keen attention due to their natural purifying function enabled by plant physiology. However, as their fine dust reduction mechanism is limited to adsorption only, vegetation bio-filters that optimize purification effects through integration with air-conditioning systems is rising as an alternative. In accordance with the relevant standard test methods, this study looked into the fine dust reduction assessment method by air-conditioning airflow volume that can be used for the industrial spread of vegetation bio-filters. In the case of PM10 at 300 ㎍/m3, it was in the order of EG-B(3,500CMH, 29 min.) < EG-A (2,500CMH, 37 min.) < CG(0CMH, 64 min.) for reaching the maintenance level (100 ㎍/m3) of publicly used facilities. For reaching the WHO Guideline(50 ㎍/m3) requirement, it was in the order of EG-B (51 min.) < EG-A (160 min.) < CG (170 min.). In the case of PM2.5, it was in the order of EG-B (26 min.) < EG-A (33 min.) < CG (57 min.) for reaching the maintenance level (50 ㎍/m3) of publicly used facilities. It was in the order of EG-B (48 min) < EG-A (140 min) < CG (158 min) for reaching the WHO Guideline (25 ㎍/m3) requirement. The findings from the analysis showed that fine dust can be reduced most efficiently when the system is operated at 3,500CMH level. The limitation of this study is that due to the absence of a way of assessing the stress of plants in vegetation bio-filters, generating optimal air-conditioning air flow of the relevant system and economics analysis against the existing facility-type air purification system have been clarified, which should be explored further though follow-up studies.

The study on CHARCOAL (숯에 대한 고찰(考察))

  • Oh, Young-Soon;Song, Tae-Won
    • Journal of Haehwa Medicine
    • /
    • v.9 no.1
    • /
    • pp.461-467
    • /
    • 2000
  • After analyzing the datas to propose the rightful recognition and research direction for the long used charcoal, the following conclusions are obtained. 1. The 'soot' is pure Korean which has the meaning of 'fresh power' and is translated in English as charcoal which is composition of china and cool meaning good. 2. The main dispositions of the charcoal are 85% of carbon, 10% of water, 4% of minerals and 2% of essential so that the understanding of properties and effects of carbon are essential. 3. It is usually appeared that there are purifying and detoxifying effects of the woods and the room in practical use of charcoal. 4. In everyday life, it removes the odors, regulates the humidity and prevents the decaying. 5. It is often used medically for activating liver fuctions, regulating digestive fuctions and for diseases with inflammations, fever or bleeding. 6. The charcoal is used in medical treatment internally as well as externally. Above conclusions shows that the objective research is needed for clinical use considering the physical and chemical properties in future.

  • PDF

The Infiltration Velocity of a Sewage Disposal System with Water Plant and Gravel Bed (수초·골재 하수처리장의 투수속도)

  • Chung, Dong Yang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.3
    • /
    • pp.29-34
    • /
    • 2003
  • This paper describes the effects of sewage amount, temperature, and years in operation on the infiltration rate of a sewage disposal system. The self-purifying sewage disposal system, which is typically used in rural areas, consists of reeds and fine gravel. Water plants are planted on the gravel bed which provides the habitat for microbes. The basic process is that the gravel bed filters incoming sewage. Thus this system requires the smooth flow of sewage through the gravel. However, the efficiency of the disposal system will be lowered if the gravel bed is clogged with sewage sludge. A three year study shows that infiltration rate slows down significantly until the 7th day, depending on the sewage amount and the temperature. After the 7th day, the infiltration rate remains almost constant. In addition, the infiltration rate decreases as the temperature falls. It also decreases as the number of years in operation increase. But there is no significant change in the infiltration rate after the 7th day, independent of the temperature, the sewage amount, and years in operation. In order to take advantage of high infiltration rate, which improves the efficiency of the disposal system in its early stages, having two gravel beds and using them alternatively will be efficient. This operation method is called intermittent load and makes the disposal system last longer. The water plant roots above the gravel bed make the effective filtration possible because they delay accumulation of the sewage sludge and stabilize the filtration ability.

Study on Manufacture of High Purity TiCl4 and Synthesis of High Purity Ti Powders (고순도 TiCl4 제조 및 이를 활용한 고순도 Ti 분말 제조 공정 연구)

  • Lee, Jieun;Yoon, Jin-Ho;Lee, Chan Gi
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.282-289
    • /
    • 2019
  • Ti has received considerable attention for aerospace, vehicle, and semiconductor industry applications because of its acid-resistant nature, low density, and high mechanical strength. A common precursor used for preparing Ti materials is $TiCl_4$. To prepare high-purity $TiCl_4$, a process based on the removal of $VOCl_3$ has been widely applied. However, $VOCl_3$ removal by distillation and condensation is difficult because of the similar physical properties of $TiCl_4$ and $VOCl_3$. To circumvent this problem, in this study, we have developed a process for $VOCl_3$ removal using Cu powder and mineral oil as purifying agents. The effects of reaction time and temperature, and ratio of purifying agents on the $VOCl_3$ removal efficiency are investigated by chemical and structural measurements. Clear $TiCl_4$ is obtained after the removal of $VOCl_3$. Notably, complete removal of $VOCl_3$ is achieved with 2.0 wt% of mineral oil. Moreover, the refined $TiCl_4$ is used as a precursor for the synthesis of Ti powder. Ti powder is fabricated by a thermal reduction process at $1,100^{\circ}C$ using an $H_2-Ar$ gas mixture. The average size of the Ti powder particles is in the range of $1-3{\mu}m$.

Plant Effects on Indoor Formaldehyde Concentration (실내 포름알데히드 농도에 미치는 식물의 영향)

  • Park, So-Young;Sung, Ki-June
    • Journal of Environmental Science International
    • /
    • v.16 no.2
    • /
    • pp.197-202
    • /
    • 2007
  • Formaldehyde is a typical indoor air pollutant that has numerous adverse health problems in modern living conditions. Phytoremediation that use plants to remove contaminants from polluted media can be applied to improve indoor air quality. Two sets of experiments; 1) two rooms in newly built auditorium and 2) a bed room in 2-year-old apartment; were performed to investigate plant effects on indoor formaldehyde concentration. It was observed from the experiments that plant can help decontaminating formaldehyde at low concentration level (0.1 ppm) but the effects decreased considerably at hish concentration (1ppm). The purification effects of indoor plant also showed the periodic pattern due to its physiological activity. More purification was observed as increasing plant density in the bed room but the formaldehyde concentration returned the original concentration level in two days after removing plants. It was suggested from the results that air purification using plants is an effective means of reduction on indoor formaldehyde level, though, reduction of source is highly desirable when the concentration level is high. The results also suggest that introducing supplementary purifying aids and/or efficient ventilation could be considered due to periodic removal pattern of plant.

Purification Ability of Indoor Plants for Volatile Organic Compounds (VOCs) (실내식물의 휘발성유기화합물질 정화에 관한 연구)

  • Park, Soyoung;Kim, Jeoung;Jang, Young-Kee;Sung, Kijune
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.417-423
    • /
    • 2006
  • The purification ability of indoor plants for volatile organic compounds was investigated. Philodendron selloum and Spathiphyllum sp. were tested for removal of toluene and trichloroethylene in the artificially contaminated reactor under laboratory conditions. Each plant was placed in right side of the reactor and the TCE and toluene concentration change with time were monitored. In the reactor with Philodendron, the TCE concentrations of left and right sides were compared to examine the removal effects by plant. In the reactor with Spathiphyllum, air was circulated before sampling, and thus average removal effects by plants on target VOC were observed. Both plants showed clear effects on removal of VOCs from contaminated indoor air. The removal efficiency of Philodendron and Spathiphyllum were similar and showed 30 - 46% and 31 - 47% of purification effects, respectively. The results of this study showed that air purification using plants is an effective means of reduction on indoor VOCs concentration level and reduce related health risk though, supplementary purifying aids or proper ventilation were also suggested.

The model on Formation of Trihalomethane in Purifying Process of Drinking Water (정수처리긍정에서 소독부산물인 트리할로메탄의 생성모델)

  • 이성식;성낙창;이종팔;박현석;정미은;이상준;윤태경
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.297-300
    • /
    • 2004
  • We have been proposed model equation which is able to predict the trihalomethane producing concentration formation, that is one of byproduct, in the water treatment processes. In proposed model, the effects of trihalomethane factors like chlorine contact time, pH, temperature, TOC and UV-254 are considered. The concentration of the trihalomethane produced is proportion to the contact with chlorine, pH of water, temperature of water TOC and UV-254, respectively. This proposed model could be predicted the formed concentration of trihalomethanes by trihalomethane factors.