• Title/Summary/Keyword: Purification network

Search Result 60, Processing Time 0.029 seconds

Prediction of residual chlorine using two-component second-order decay model in water distribution network (이변량 감소모델을 적용한 배급수관망에서의 잔류염소농도 예측 및 이의 활용)

  • Kim, Young Hyo;Kweon, Ji Hyang;Kim, Doo Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.287-297
    • /
    • 2014
  • It is important to predict chlorine decay with different water purification processes and distribution pipeline materials, especially because chlorine decay is in direct relationship with the stability of water quality. The degree of chlorine decay may affect the water quality at the end of the pipeline: it may produce disinfection by-products or cause unpleasant odor and taste. Sand filtrate and dual media filtrate were used as influents in this study, and cast iron (CI), polyvinyl chloride (PVC), and stainless steel (SS) were used as pipeline materials. The results were analyzed via chlorine decay models by comparing the experimental and model parameters. The models were then used to estimate rechlorination time and chlorine decay time. The results indicated that water quality (e.g. organic matter and alkalinity) and pipeline materials were important factors influencing bulk decay and sand filtrate exhibited greater chlorine decay than dual media filtrate. The two-component second-order model was more applicable than the first decay model, and it enabled the estimation of chlorine decay time. These results are expected to provide the basis for modeling chlorine decay of different water purification processes and pipeline materials.

Temperature-Sensitive Polymers Adhered on FO Membrane as Drawing Agents (자극감응성 유도용질로서 정삼투막에 부착된 온도감응성 고분자)

  • Lee, Chong-Cheon;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.626-631
    • /
    • 2014
  • Water purification requires a large amount of energy that can cause pollution problems. For this reason, forward osmosis (FO) has attracted intense interest that required a relatively low amount of energy for water purification. The forward osmosis has a serious problem that it needs drawing agents creating osmotic pressure to extract water from contaminated water. In this study, a copolymer of zwitterionic moiety and an interpenetrating polymer network (IPN) hydrogel based on thermo-responsive polymer hydrogel, poly(N-isopropylacrylamide) (PNIPAM) were prepared and attached on FO membranes, which successfully played the role of drawing agents. In the copolymer hydrogel, its swelling ratio was improved, but thermo-sensitivity was decreased. The swelling ratio and thermo-sensitivity of IPN hydrogel was lowered. We could confirm that swelling ratio is related to osmotic pressure.

Fabrication and Electrical Properties of Highly Organized Single-Walled Carbon Nanotube Networks for Electronic Device Applications

  • Kim, Young Lae
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.66-69
    • /
    • 2017
  • In this study, the fabrication and electrical properties of aligned single-walled carbon nanotube (SWCNT) networks using a template-based fluidic assembly process are presented. This complementary metal-oxide-semiconductor (CMOS)-friendly process allows the formation of highly aligned lateral nanotube networks on $SiO_2/Si$ substrates, which can be easily integrated onto existing Si-based structures. To measure outstanding electrical properties of organized SWCNT devices, interfacial contact resistance between organized SWCNT devices and Ti/Au electrodes needs to be improved since conventional lithographic cleaning procedures are insufficient for the complete removal of lithographic residues in SWCNT network devices. Using optimized purification steps and controlled developing time, the interfacial contact resistance between SWCNTs and contact electrodes of Ti/Au is reached below 2% of the overall resistance in two-probe SWCNT platform. This structure can withstand current densities ${\sim}10^7A{\cdot}cm^{-2}$, equivalent to copper at similar dimensions. Also failure current density improves with decreasing network width.

Separation and Purification of Useful Proteins Using Hydrogel Ultratiltration

  • Park, Chang-Ho;Son, Chang-Kyu;Park, Jong-Hwa;Chung, In-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.113-116
    • /
    • 1997
  • The hydrogel process is a different form of ultrafiltration and has been used to separate biological molecules. In this study, the gel pore size was predicted by pulse NMR technique and neural network using a database obtained from gel filtration chromatography and diffusion experiment. Recombinant alkaline phosphatase expressed in insect cells was concentratred 1.5 times by hydrogel ultrafiltration by swelling at 2$0^{\circ}C$ and collapsing at 35$^{\circ}C$ at 53-65% separation efficiency and 78-83% enzyme recovery. Wild and recombinant Autographa californica unclear polyhedrosis viruses (AcNPV) were also concentrated 1.4 and 1.6 times of the feed solution at 48.5 and 60.0% separation efficiency, respectively Hydrogel ultrafiltration appears to be an attractive alternative for the concentration of AcNPV and recombinant proteins from insect cells.

  • PDF

A Study on the Neuro-Fuzzy Control for an Inverted Pendulum System (도립진자 시스템의 뉴로-퍼지 제어에 관한 연구)

  • 소명옥;류길수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.11-19
    • /
    • 1996
  • Recently, fuzzy and neural network techniques have been successfully applied to control of complex and ill-defined system in a wide variety of areas, such as robot, water purification, automatic train operation system and automatic container crane operation system, etc. In this paper, we present a neuro-fuzzy controller which unifies both fuzzy logic and multi-layered feedforward neural networks. Fuzzy logic provides a means for converting linguistic control knowledge into control actions. On the other hand, feedforward neural networks provide salient features, such as learning and parallelism. In the proposed neuro-fuzzy controller, the parameters of membership functions in the antecedent part of fuzzy inference rules are identified by using the error backpropagation algorithm as a learning rule, while the coefficients of the linear combination of input variables in the consequent part are determined by using the least square estimation method. Finally, the effectiveness of the proposed controller is verified through computer simulation of an inverted pendulum system.

  • PDF

Watershed Scale Management Techniques of the Pollutants from Small Scale Livestock Ranches - Buffer Zone Selection for Natural Purification - (농촌 소유역 축산폐수의 유역관리기법 개발 - 자연정화처리를 위한 완충대 적지분석 -)

  • Kim, Seong-Joon;Lee, Nam-Ho;Yoon, Kwang-Sik;Hong, Seong-Gu;Lee, Yun-Ah
    • Journal of Korean Society of Rural Planning
    • /
    • v.6 no.2 s.12
    • /
    • pp.43-49
    • /
    • 2000
  • Buffer zone selection technique for natural purification of livestock wastewater within a small agricultural watershed was developed using Geographic Information Systems. The technique was applied to $4.12\;km^2$ watershed located in Gosan-myun, Ansung-gun which have 20 livestock farmhouses. As a necessary data for selecting process, feedlot site map, digital Elevation Model (DEM), stream network, soil and land use map were prepared. By using these data, wastewater moving-path tracing program from each feedlot to the stream was developed to get the basic topographic factors; average slope through the paths, distance to the nearest stream and watershed outlet. To identify the vulnerable feedlots for storm event, the grid-based storm runoff model (Kim, 1998; Kim et al., 1998) was adopted. The result helps to narrow down the suitable area of buffer zone, and finally by using subjective but persuasive conditions related to elevation, slope and land use, the suitable buffer zones were selected.

  • PDF

Isolation of Schwann Cell and Separation of Schwann Cell-Neuron Network from Mouse Embryo (마우스 배아에서 슈반세포-뉴런 네트워크의 분리와 슈반세포의 분리)

  • Kweon, Tae-Dong;Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.943-945
    • /
    • 2013
  • The study of Schwann cell myelination has been facilitated by the availability to isolate and establish pure population of primary Schwann cells. Dorsal root ganglia (DRG) of mouse embryo as source of Schwann cells were used in this study. This method includes three steps: first step of dissociation of the embryonic DRG, second step of expansion of Schwann cell precursors, followed by mechanical separation of the Schwann cell-neuronal network from the underlying fibroblasts, and third step of purification of Schwann cells from the associated neurons and subsequent expansion of the purified Schwann cells. We made a highly purified population of Schwann cells and Schwann cell-neuron networks in a short period using this procedure.

  • PDF

Development of prediction models of chlorine bulk decay coefficient by rechlorination in water distribution network (상수도 공급과정 중 재염소 투입에 따른 잔류염소농도 수체감소계수 예측모델 개발)

  • Jeong, Bobae;Kim, Kibum;Seo, Jeewon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.17-29
    • /
    • 2019
  • This study developed prediction models of chlorine bulk decay coefficient by each condition of water quality, measuring chlorine bulk decay coefficients of the water and water quality by water purification processes. The second-reaction order of chlorine were selected as the optimal reaction order of research area because the decay of chlorine was best represented. Chlorine bulk decay coefficients of the water in conventional processes, advanced processes before rechlorination was respectively $5.9072(mg/L)^{-1}d^{-1}$ and $3.3974(mg/L)^{-1}d^{-1}$, and $1.2522(mg/L)^{-1}d^{-1}$ and $1.1998(mg/L)^{-1}d^{-1}$ after rechlorination. As a result, the reduction of organic material concentration during the retention time has greatly changed the chlorine bulk decay coefficient. All the coefficients of determination were higher than 0.8 in the developed models of the chlorine bulk decay coefficient, considering the drawn chlorine bulk decay coefficient and several parameters of water quality and statistically significant. Thus, it was judged that models that could express the actual values, properly were developed. In the meantime, the chlorine bulk decay coefficient was in proportion to the initial residual chlorine concentration and the concentration of rechlorination; however, it may greatly vary depending on rechlorination. Thus, it is judged that it is necessary to set a plan for the management of residual chlorine concentration after experimentally assessing this change, utilizing the methodology proposed in this study in the actual fields. The prediction models in this study would simulate the reduction of residual chlorine concentration according to the conditions of the operation of water purification plants and the introduction of rechlorination facilities, more reasonably considering water purification process and the time of chlorination. In addition, utilizing the prediction models, the reduction of residual chlorine concentration in the supply areas can be predicted, and it is judged that this can be utilized in setting plans for the management of residual chlorine concentration.

Characteristics and Function Assessment of Inland Wetlands in Chungnam Province (충청남도 내륙습지 특성 및 기능평가)

  • Park, Mi Ok;Koo, Bon Hak;Kim, Ha Na
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.5
    • /
    • pp.92-100
    • /
    • 2009
  • This study was surveyed from May to October, 2008 in order to classify type distribution and evaluate the function of inland wetland as a ecological axis in Chungnam province. Assessment was done by modified-RAM (Rapid Assessment Method). RAM is consisted of total 8 functions and divided into high, moderate, low. The conservation grade of RAM is divided into 4 grades; absolute conservation, conservation, improvement and restoration. Throughout survey on total 13 wetlands of Lacustrine, Palustrine wetland which are distributed in Chungnam province, their function was assessed. As result, the 2 wetlands were judged as absolute conservation grade by assessment of 8 functional contents, and 7 sites were improvement wetlands and 4 sites were conservation wetlands. The function of wetlands assessed as conservation grade showed high in water quality protection and improvement. Also, showed high in vegetation diversity, wildlife habitat and aesthetic recreation. Meanwhile, showed low in Water quality purification, Shoreline/Stream Bank Protection. Of wetlands evaluated as conservation grade, Jeong-juk Ji and Dun-ri reservoir were assessed as absolute conservative area. These wetlands are essential to be managed continuously as a area having high ecological value. Farther, these wetlands will be done as a axis of ecological network related to 'Kumbuk jeongmaek' ecosystem.

Development of microfluidic green algae cell counter based on deep learning (딥러닝 기반 녹조 세포 계수 미세 유체 기기 개발)

  • Cho, Seongsu;Shin, Seonghun;Sim, Jaemin;Lee, Jinkee
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.41-47
    • /
    • 2021
  • River and stream are the important water supply source in our lives. Eutrophication causes excessive green algae growth including microcystis, which makes harmful to ecosystem and human health. Therefore, the water purification process to remove green algae is essential. In Korea, green algae alarm system exists depending on the concentration of green algae cells in river or stream. To maintain the growth amount under control, green algae monitoring system is being used. However, the unmanned, small and automatic monitoring system would be preferable. In this study, we developed the 3D printed device to measure the concentration of green algae cell using microfluidic droplet generator and deep learning. Deep learning network was trained by using transfer learning through pre-trained deep learning network. This newly developed microfluidic cell counter has sufficient accuracy to be possibly applicable to green algae alarm system.