• Title/Summary/Keyword: Pure Titanium

Search Result 330, Processing Time 0.031 seconds

Hydrogenation Behavior of Sponge Titanium (스폰지 티타늄의 수소화 거동)

  • Park, Ji-Hwan;Lee, Dong-Won;Kim, Jong-Ryoul
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.385-389
    • /
    • 2010
  • Titanium powders have been usually produced by de-hydrogenating treatment in vacuum with titanium hydride ($TiH_2$) powders prepared by milling of hydrogenated sponge titanium, $TiH_x$. The higher stoichiometry of x in $TiH_x$, whose maximum value is 2, is achieved, crushing behavior is easier. $TiH_x$ powder can be, therefore, easy to manufactured leading to obtain higher recovery factor of it. In addition, contamination of the powder can also minimized by the decrease of milling time. In this study, the hydrogenation behavior of sponge titanium was studied to find the maximum stoichiometry. The maximum stoichiometry in hydride formation of sponge titanium could be obtained at $750^{\circ}C$ for 2 hrs leading to the formation of $TiH_{{\sim}1.99}$ and the treating temperatures lower or higher than $750^{\circ}C$ caused the poor stoichiometries by the low hydrogen diffusivity and un-stability of $TiH_x$, respectively. Such experimental behavior was compared with thermodynamically calculated one. The hydrogenated $TiH_{1.99}$ sponge was fully ball-milled under -325 Mesh and the purity of pure titanium powders obtained by de-hydrogenation was about 99.6%.

THE EVALUATION OF CYTOTOXICITY AND BIOCOMPATIBILITY OF TI-TA-NB-BASE ALLOY (Ti-Ta-Nb계 합금의 세포독성과 생체적합성의 평가)

  • Cui De-Zhe;Vang Mong-Sook;Yoon Taek-Rin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.250-263
    • /
    • 2006
  • Statement of problem: Ti-alloy has been used widely since it was produced in the United States in 1947 because it has high biocompatibility and anticorrosive characteristics. Purpose: The pure titanium, however, was used limitedly due to insufficient mechanical charateristics and difficult manufacturing process. Our previous study was focused on the development of a new titanium alloy. In the previous study we found that the Ti-Ta-Nb alloy had better mechanical characteristics and similar anticorrosive characteristics to Ti-6Al-4V Material and methods: In this study, the cytotoxicity of the Ti-Ta-Nb alloy was evaluated by MTT assay using MSCs(Mesenchaimal stem cells) and L929 cells(fibroblast cell line). The biocompatibility of the Ti-Ta-Nb alloy was performed by inserting the alloy into the femur of the rabbits and observing the radiological and histological changes surrounding the alloy implant. Results: 1. In the cytotoxicity test using MSCs, the 60% survival rate was observed in pure titanium, 84% in Ti-6Al-4V alloy and 95% in Ti-10Ta-10Nb alloy. 2. In the animal study, the serial follow-up of the radiographs showed no separation or migration revealing gradual bone ingrowth surrounding the implants. Similar radiographic results were obtained among three implant groups pure titanium, Ti-6Al-4V alloy and Ti-10Ta-10Nb alloy. 3. In the histologic examination of the bone block containing the implants. the bone ingrowth was prominent around the implants with the lapse of time. There was no signs of any tissue rejection, degeneration, or inflammation. Active bone ingrowth was observed around the implants. In the comparison of the three groups, the rate of bone ingrowth was better in the Ti-10Ta-10Nb alloy group than those in pure titanium group or Ti-6Al-4V alloy group. In conclusion, Ti-10Ta-10Nb alloy revealed better biocompatibility in survival rate of the cells and bone ingrowth around the implants. Therefore we believe a newly developed Ti-10Ta-10Nb alloy can replace currently used Ti-6Al-4V alloy to increase biocompatibility and to decrease side effects. Conclusion: In conclusion, Ti-10Ta-10Nb alloy revealed better biocompatibility in survival rate of the cells and bone ingrowth around the implants. Therefore we believe a newly developed Ti-10Ta-10Nb alloy can replace currently used Ti-6Al-4V alloy to increase biocompatibility and to decrease side effects.

Effects of Holding Temperatures on Microstructure and Mechanical Properties of CP Titanium and Ti-6Al-4V Alloy and Its low Temperature Brazing Characteristics (열노출 온도에 따른 CP 티타늄, Ti-6Al-4V 합금의 미세조직/기계적성질 변화 및 저온브레이징 특성)

  • Sun, J.H.;Shin, S.Y.;Hong, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.1
    • /
    • pp.3-9
    • /
    • 2010
  • Titanium and its alloys were brazed in the range of $850-950^{\circ}C$ within 10 min. of brazing time using expensive infra red or other heating methods. However, brazing time needs to be extended to get temperature-uniformity for mass production by using continuous belt type furnace or high vacuum furnace with low heating rate. This study examined effects of holding temperature for 60 min, on microstructure and mechanical properties of titanium alloys. Mechanical properties of titanium alloys were drastically deteriorated with increasing holding temperature followed by grain growth. Maximum holding temperatures for CP (commercial pure) titanium and Ti-6Al-4V were confirmed as $800^{\circ}C$ and $850^{\circ}C$, respectively. Both titanium alloys were successfully brazed at $800^{\circ}C$ for 60 min. with the level of base metal strengths by using Zr based filler metal, $Zr_{54}Ti_{22}Ni_{16}Cu_8$.

A Study on Pore Structure and Mechanical Properties of Porous Titanium Fabricated by Three-dimensional Layer Manufacturing Process (3차원적층조형법으로 제조된 타이타늄 금속 다공체의 기공구조 및 기계적 특성에 관한 연구)

  • Son, Byoung-hwi;Hong, Jae-geun;Hyun, Yong-taek;Bae, Seok-choun;Kim, Seung-eon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.100-106
    • /
    • 2012
  • This study was performed to fabricate porous titanium foam by three-dimensional layer manufacturing process, and to evaluate the porosities, compressive stress, Young's modulus and fracture pattern. Porous titanium foam was made of CP(Commercial Pure) titanium powder (${\leq}5{\mu}m$). Total porosities of titanium foam were in the range of 55-68%. Pore size distribution was $200-440{\mu}m$ for coarse pores, $50-100{\mu}m$ for intermediate pores and $5-10{\mu}m$ for fine pores. Compression elastic modulus and compression stress were decreased with increasing porosity. Young's modulus ranged from 1.04-5.62 GPa and maximum stress ranged from 20-241 MPa. Regarding the mechanical properties, 3D(Three Demensional) porous titanium fabricated layer manufacturing is a promising material for human bone replacement.

Effects of Cooling Method Followed by Casting on the Interfacial and Mechanical Properties of Dental CP-Ti Casts (치과용 티타늄 주조체의 냉각방법이 표면반응층 및 기계적 특성에 미치는 영향)

  • Moon, Soo;Jung, Jun-Young;Kim, Ki-Ju;Lee, Jin-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.375-380
    • /
    • 2003
  • In this study. we have intended to control the properties of surface reaction zone generated between pure titanium and oxide investment moulds. Commercially pure titanium was centrifugally casted and silica$.$alumina based phosphate bonded investment was used as the mould material. The effect of cooling methods after casting on the surface reaction zone and mechanical properties of casts were investigated. The resulting casts showed the multilayered surface reaction zone regardless of cooling method. Especially. water cooling method produced the titanium casts with thinner surface reaction zone. weaker strength. and higher elongation properties compared to air cooling. It can thus be known that the resulting casts had satisfactory mechanical properties as dental materials. From these results, the cooling rate dependence of interfacial and mechanical properties can be attributed to the diffusion of oxygen from casting environment, which control the reaction of titanium and mould.

Osteogenic Gene Expression on Anodizing Titanium Surface (양극산화 처리된 타이타늄 표면에서 골형성 유전자 발현)

  • Kim, Won-Seok;Kim, Young-Seok;Jeon, Seong-Bae;Jun, Sang-Ho;Lee, Eui-Suk;Jang, Hyon-Seok;Kwon, Jong-Jin;Rim, Jae-Suk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.2
    • /
    • pp.91-99
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the expression of osteogenic genes associated with bone regeneration on anodizing titanium surface. Methods: $20{\times}20{\times}1$ (mm) commercially pure titanium plate was made, one group was pure titanium, second group was punched, and last group was punched and anodized by electrochemical method. Through the osteogenic cell culture model, the expression of extracellular matrix proteins, such as bone morphogenetic protein-2, bone sialoprotein, aggrecan, osteocalcin, Alkaline phosphatase, collagen I had been evaluated by Real-time polymerase chain reaction, and the morphology of growing cells was evaluated by scanning electron microscopy. Results: The attachment of mesenchymal stem cell was even and well-oriented on all Ti surfaces. The osteogene expression was increased on punching groups but, decreased on anodizing surfaces in 3 week samples. Conclusion: Punched anodizing Ti has possibility be using as a dental implant material, but further in vivo study would be needed.

Anodic Dissolution Property and Structure of Passive Films on Equiatomic TiNi Intermetallic Compound

  • Lee, Jeong-Ja;Yang, Won-Seog;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.311-315
    • /
    • 2007
  • The anodic polarization behavior of equiatomic TiNi shape memory alloy with pure titanium as a reference material was investigated by means of open circuit potential measurement and potentiodynamic polarization technique. And the structure of passive films on TiNi intermetallic compounds was also conducted using AES and ESCA. While the dissolved Ni(II) ion did not affect the dissolution rate and passivation of TiNi alloy, the dissolved Ti(III) ion was oxidated to Ti(IV) ion on passivated TiNi surface at passivation potential. It has also been found that the Ti(IV) ion increases the steady state potential, and passivates TiNi alloy at a limited concentration of Ti(IV) ion. The analysis by AES showed that passive film of TiNi alloy was composed of titanium oxide and nickel oxide, and the content of titanium was three times higher than that of nickel in outer side of passive film. According to the ESCA analysis, the passive film was composed of $TiO_2$ and NiO. It seems reasonable to suppose that NiO could act as unstabilizer to the oxide film and could be dissolved preferentially. Therefore, nickel oxide contained in the passive film may promote the dissolution of the film, and it could be explained the reason of higher pitting susceptibility of TiNi alloy than pure Ti.

Fatigue properties of nitrided titanium using fluidized bed furnace (유동상로를 이용한 질화처리티타늄의 피로강도 특성)

  • Kim, Min-Gun;Ji, Jueng-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.142-147
    • /
    • 1998
  • Rotary bending fatigue tests were carried out on the nitrided titanium in order to investigate the effect of nitriding layer on fatigue limit. Main results obtained are as follows. (1) The fatigue limit of nitrided pure titanium is remarkably reduced because of enlargement of grain size at high heat treating temperature and high stress field created from the elastic interaction in the compound layer. (2) Further test using specimen which was removed nitrified layer gradually, were also conducted and it was found that by removing the compound layer the fatigue limit recovered as the level of basic material and rather increased by coming of a diffusion layer. Therefore it is concluded that the surface compound layer generated by nitriding treatment reduced the fatigue limit but diffusion layer increased it.

Numerical Analysis of Thermal Characteristics of a Milling Process of Titanium Alloy Using Nanofluid Minimum-Quantity Lubrication (티타늄 합금의 나노유체 극미량 윤활 밀링 공정 열특성에 관한 수치 해석 연구)

  • Kim, Young Chang;Kim, Jin Woo;Kim, Jung Sub;Lee, Sang Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.253-258
    • /
    • 2017
  • This paper presents a numerical study on the thermal characteristics of a milling process of titanium alloy with nanofluid minimum-quantity lubrication (MQL). The computational fluid dynamics (CFD) approach is introduced for establishing the numerical model for the nanofluid MQL milling process, and estimated temperatures for pure MQL and for nanofluid MQL using both hexagonal boron nitride (hBN) and nanodiamond particles are compared with the temperatures measured by thermocouples in the titanium alloy workpiece. The estimated workpiece temperatures are similar to experimental ones, and the model is validated.