• Title/Summary/Keyword: Pure Random Excitation

Search Result 4, Processing Time 0.018 seconds

Pattern Optimization of Intentional Blade Mistuning for the Reduction of the Forced Response Using Genetic Algorithm

  • Park, Byeong-Keun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.966-977
    • /
    • 2003
  • This paper investigates how intentional mistuning of bladed disks reduces their sensitivity to unintentional random mistuning. The class of intentionally mistuned disks considered here is limited, for cost reasons, to arrangements of two types of blades (A and B, say). A two-step procedure is then described to optimize the arrangement of these blades around the disk to reduce the effects of unintentional random mistuning. First, a pure optimization effort is undertaken to obtain the pattern (s) of the A and B blades that yields small/the smallest value of the largest amplitude of response to a given excitation in the absence of unintentional random mistuning using Genetic Algorithm. Then, in the second step, a qualitative/quantitative estimate of the sensitivity for the optimized intentionally mistuned bladed disks with respect to unintentional random mistuning is performed by analyzing their amplification factor, probability density function and passband/stopband structures. Examples of application with simple bladed disk models demonstrate the significant benefits of using this class of intentionally mistuned disks.

Modal analysis of a vehicle cabin model having high decoupling tendency (다종의 가진방법을 이용한 비연성 경향을 가진 차실모형의 모우드 해석)

  • 김시조;조동우;한상욱
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.25-37
    • /
    • 1992
  • Interior noise in a car is known to have an important influence on product acceptability. This noise is closely correlated with structural-acoustic vibration. When considering noise problem, the structural-acoustic relation of a vehicle cabin model needs to be identified. However, it is very difficult to get the modal parameters of this kind of cabin structure composed of thin plates: because it not only can be excited by the acoustic vibration of cavity, but also tends to have decoupling effects of one plate from another. In order to obtain modal parameters more precisely, various excitation techniques, i.e. impact, pure random, burst random, and swept sine testing are applied for the first step. In the case of the cabin model, impact and swept sine testing show good results. Next, the determination of the excitation point by trial- and-error and the accurate measurements of FRF's are performed with these methods. The modal parameter extraction is carried out for the final step. This paper proposes a new approach to find the modal parameters more reliably in the case of high decoupling effects. That is, the convergence of MIF and MCF in each panel, which provide some criteria for the validity of the obtained modal parameters, is observed. And from those results, the pretty accurate modal parameters can be determined. A comparative assessment between the modal testing and the FEM is also performed.

  • PDF

Ground Vibration Test for Korea Sounding Rocket - III (KSR-III의 전기체 모달 시험)

  • 우성현;김영기;이동우;문남진;김홍배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.441-447
    • /
    • 2002
  • KSR-III(Korea Sounding Rocket - III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a three-stage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSR-III is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSR-III EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate free-free condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(Multi-Input-Multi-Output) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

  • PDF

Ground Vibration Test for Korea Sounding Rocket - II PFM (과학로켓 2호(KSR-II) 준비행 모델의 지상 진동 시험)

  • 우성현;김홍배;문상무;이상설;문남진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.546-551
    • /
    • 2001
  • Space Test Department at KARI(Korea Aerospace Research Institute) plans to carry out the GVT(Ground Vibration Test) for the KSR(Korea Sounding Rocket)-III FM(Flight Model) which is being developed by Space Technology R&D Division. KSR-III will be an intermediate to the launch vehicle capable of carrying satellites to their orbits. GVT offers very important information to predict the behavior of KSR in its operation, and to develop the flight control and aerodynamic analysis. For development of test facilities, testing and analysis methods which can be used for the future test, Space Test Department has performed the GVT with KSR-II PFM(Proto-Flight Model) at Satellite Integration & Test Center of KARl This paper discusses the procedures, techniques and the results of it. In this test, to simulate free-free condition, test object hung in the air by 4 bungee cords specially devised. The GVT was carried out using pure random excitation technique with MIMO(Multi-Input-Multi-Output) method with three electromagnetic shakers, and poly-reference parameter estimation was used to identify the modal parameters. As the result of the test, 11 mode shapes and modal parameters below 200㎐ were identified and compared with analytical results.

  • PDF