• Title/Summary/Keyword: Pure Metal

Search Result 552, Processing Time 0.025 seconds

Analysis of Interfacial Layer between Alumina and Silica/Silicon Substrate (알루미나와 실리카/실리콘 기판의 계면 분석)

  • 최일상;김영철;장영철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.252-254
    • /
    • 2002
  • Metal oxides with high dielectric constants have the potential to expend scaling of transistor gate capacitance beyond that of ultrathin silicon dioxide. However, during deposition of most metal oxides on silicon, an interfacial region of SiOx is formed and limits the specific capacitance of the gate structure. We deposisted aluminum oxide and examined the composition of the interfacial layer by employing high-resolution X-ray photoelectron spectroscopy and X-ray reflectivity. We find that the interfacial region is not pure SiO$_2$, but is composed of a complex depth-dependent ternary oxide of $AlSi_xO_y$ and the pure SiO$_2$.

  • PDF

Amorphization Process of Cr-N Alloy System by Mechanical Alloying (기계적 합금화에 의한 Cr-N계 합금의 비정질화 과정)

  • 이충효;이성희;이상진;권영순
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.288-293
    • /
    • 2003
  • Mechanical alloying (MA) by high energy ball mill of Pure chromium Powders was carried out under the nitrogen gas atmosphere. Cr-N amorphous alloy powders have been produced through the solid-gas reaction subjected to MA. The atomic structure during amorphization process was observed by X-ray and neutron diffractions. An advantage of the neutron diffraction technique allows us to observe the local atomic structure surrounding a nitrogen atom. The coordination number of metal atoms around a N atom turns out to be 5.5 atoms. This implies that a nitrogen atom is located at both of centers of the tetrahedron and octahedron formed by metal atoms to stabilize an amorphous Cr-N structure. Also, we have revealed that a Cr-N amorphous alloy may produced from a mixture of pure Cr and Cr nitrides powders by solid-solid reaction during mechanical alloying.

Recent Trend of Ultra-Pure Water Producing Equipment

  • Motomura, Yoshito
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.121-147
    • /
    • 1996
  • Since 1980, the water quality of ultra-pure water has been rapidly improved, and presently ultra-pore water producing equipment for 64Mbit is in operation. Table 1 shows the degree of integration of DRM and required water quality exlmple. The requirements of the ultra-pure water for 64Mbit are resistivity: 18.2 MQ/cm or higher, number of particulates: 1 pc/ml or less (0.05 $\mu$m or larger). bacteria count: 0.1 pc/l or less. TOC (Total Organic Carbon, index of organic snbstance) : 1ppb or less, dissolved oxygen: 5ppb or less, silica: 0.5ppb or less, heavy metal ions: 5ppb or less. The effect of metals on the silicon wafer has been well known, and recently it has been reported that the existence of organic substance in ultra-pure water is closely related to the device defect, drawing attention. It is reported that if organic substance sticks to the natural oxidation film, the oxide film remaims on the organic substance attachment in the hydrofluoric acid treatment (removal of natural oxidation film). The organic substance forms film on the silicon wafer, and harmful elements such as metals and N.P.S., components contained in the organic substance and the bad effect due to the generatinn of silicon carbide cannot be forgotten. In order to remove various impurities in raw water, many technological develoments (membrane, ion exchange, TOC removal, piping material, microanalysis, etc.) have been made with ultra-pure water producing equipment and put to practical use. In this paper, technologies put to practical use in recent ultra-pure vater producing equimeut are introduced.

  • PDF

Adsorption of Low-level CO2using Activated Carbon Pellet with Glycine Metal Salt Impregnation (글리신 금속염 함침 입자상 활성탄의 저농도 이산화탄소 흡착능 평가연구)

  • Lim, Yun Hui;Adelodun, A.A.;Jo, Young Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.1
    • /
    • pp.68-76
    • /
    • 2014
  • The present study has evaluated the $CO_2$ adsorption amount of activated carbon pellets (AC). Coconut shell based test AC were modified with surface impregnation of glycine, glycine metal salts and monoethanolamine for low level $CO_2$ (3000 ppm) adsorption. Physical and chemical properties of prepared adsorbents were analyzed and the adsorbed amount of $CO_2$ was investigated by using pure and 3,000 ppm $CO_2$ levels. The impregnation of nitrogen functionalities was verified by XPS analysis. The adsorption capacity for pure $CO_2$ gas was found to reach upto 3.08 mmol/g by AC-LiG (Activated carbon-Lithium glycinate), which has the largest specific surface area ($1026.9m^2/g$). As for low level $CO_2$ flow the primary amine impregnated adsorbent showed 0.26 mmol/g of adsorption amount, indicating the highest selectivity. An adsorbent with potassium-glycine salts (AC-KG, Activated carbon-Potassium glycinate) instead of amine presented with 0.12 mmol/g of adsorption capacity, which was higher than that of raw activated carbon granules (0.016 mmol/g).

SUBLAYER THICKNESS DEPENDENCE OF THE OPTICALPROPERTIES OF NI/TI AND Fe/Zr MULTILAERS

  • Lee, Y.P.;Kim, K.W.;Lee, G.M.;Rhee, J.Y.;Szymansky, B.;Dubowik, J.;Kucherenko, A.Yu.;Kudryavstev, Y.V.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.70-74
    • /
    • 1997
  • The study of the thickness dependence of the electron energy structure of Fe, Ni, Ti and Zr sublayers in Ni/Ti and Fe/Zr multilayers by using the experimental and computer simulated optical spectroscopy has been performed. A series of Ni/Ti and Fe/Ze multiayered films (MLF) with a bilayer period of 0.5 - 30 nm and constant (Ni/Ti) / different (Fe/Zr) sublayer thickness ratios were prepared by using computer-controlled double-pair target face-to-face sputtering onto a glass substrate at room temperature (RT) Computer simulation of the resulting optical properties of these MLF was carried out by solving of multireflection problem with a matrix method assuming either "sharp" interfaces resulting in rectangular depth profiles of the components or "mixed" (alloy-like) interfaces of variable thickness between pure-metal sublayers. Optical constants of pure bulk metals as well as equiatomic alloy interfaces were employed in these simulations. It was shown that the difference between experimental and simulated optical properties of the investigated MLF increases with decrease in sublayer thickness. This result allows to conclude that the electronic structures of sublayers below 4-5 nm thickness in mlf differ from the corresponding bulk metals.ponding bulk metals.

  • PDF

Improvement of Wear Resistance of Aluminum by Metal-Ceramic Particle Composite Layer (알루미늄표면에 금속-세라믹입자 복합첨가에 의한 내마모성개선)

  • ;;;中田一博;松田福久
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.96-104
    • /
    • 1997
  • The present study was aimed to correlate the microstructure and the hardness as well as the wear resistance of the metal-ceramic particulated composite layer on the pure Al plate. The composite layers were constructed by the addition of TiC particles on the surface of Al-Cu alloyed layers by PTA overlaying process. Initially, the Al-Cu alloyed layers were achieved by the deposition of Al-(25 ~ 48%) Cu alloys on the pure Al plate by TIG process. It was revealed that TiC particles were uniformly dispersed without any reaction with matrix in the composite layer. The volume fraction of TiC particles (TiC V F) increased from 12% to 55% with increasing the number of pass of composite layer. Hardnesses of (Al-48%Cu + TiC (3&4layers)) composite layer were Hv450 and Hv560, respectively, due to the increase of TiC V/F. Hardnesses of (Al-Cu + TiC) composite layers decreased gradually with insreasing temperature from 100$^{\circ}$C to 400$^{\circ}$C, and hardnesses at 400$^{\circ}$C were then reached to 1/5 - 1/10 of room temperature hardness depending on the construction of composite layers. The Specific wear of (Al + Tic) layer and Al-48%Cu alloyed layer decreased to 1/10 of the of pure Al, while the specific wear of (Al-48%Cu + TiC (4 layers)) composite layer exhibited 1/15 of that of steel such as SS400 and STS304.

  • PDF

Controlled Conversion of Sodium Metal From Nuclear Systems to Sodium Chloride

  • Herrmann, Steven;Zhao, Haiyan;Shi, Meng;Patterson, Michael
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.233-241
    • /
    • 2021
  • A series of three bench-scale experiments was performed to investigate the conversion of sodium metal to sodium chloride via reactions with non-metal and metal chlorides. Specifically, batches of molten sodium metal were separately contacted with ammonium chloride and ferrous chloride to form sodium chloride in both cases along with iron in the latter case. Additional ferrous chloride was added to two of the three batches to form low melting point consolidated mixtures of sodium chloride and ferrous chloride, whereas consolidation of a sodium-chloride product was performed in a separate batch. Samples of the products were characterized via X-ray diffraction to identify attendant compounds. The reaction of sodium metal with metered ammonium chloride particulate feeds proceeded without reaction excursions and produced pure colorless sodium chloride. The reaction of sodium metal with ferrous chloride yielded occasional reaction excursions as evidenced by temperature spikes and fuming ferrous chloride, producing a dark salt-metal mixture. This investigation into a method for controlled conversion of sodium metal to sodium chloride is particularly applicable to sodium containing elevated levels of radioactivity-including bond sodium from nuclear fuels-in remote-handled inert-atmosphere environments.

MECHANICAL PROPERTIES OF TITANIUM CONNECTORS TREATED BY VARIOUS WELDING TECHNIQUES (용접방법에 의한 타이타늄 연결부의 기계적 성질에 관한 연구)

  • Lee, Soo-Young;Chang, Ik-Tae;Heo, Seong-Joo;Yim, Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.545-566
    • /
    • 1999
  • The use of pure titanium and titanium alloys have been increased recently in fixed, removable prosthodontics and implant fields as a framework. But when they were used for superstructures of implant or metal framework of removable prosthesis, welding is necessary to reconnect the fracture site to control the casting distortions. To overcome the difficulties in soldering the titanium due to high oxidation property, much effort have been devoted. In this study, some of mechanical properties were compared between pure titanium and Ti-6Al-4V alloy by using after welding, electron beam welding technique and tungsten arc welding. Mechanical properties such as tensile strength, yield strength, elongation and microhardness were measured. And, in order to compare the effect of welding site and surrounding metal tissue according to the welding condition, SEM photographs were taken and element distribution was observed by Wave Dispersion Spectroscopy. Through analyses of the data, following results were obtained; 1. In items such as tensile strength, yield strength and elongation according to the welding techniques of pure titanium, only tungsten arc welded group showed significant lower value than other groups(P<0.05). 2. In items such as tensile strength and yield strength according to the welding techniques of Ti-6Al-4V alloy, control group and tungsten arc welded group showed significant difference among all the groups(P<0.05). 3. Ti-6Al-4V alloy exhibited significantly greater elongation than control group when the laser welding method and electron beam welding method were used, and elongation showed increasing tendency. 4. Pure titanium specimens exhibited increasing tendency of microhardness regardless of the weld-ing technique applied, and especially tungsten arc welded group demonstrated a great increase of microhardness than parent metal. 5. There was no hardness change in laser welded group and electron beam welded group of Ti-6Al-4V alloy, but in tungsten arc welded group, hardness changed greatly from parent metal to weld seam. 6. Through the metallographic examination and scanning electron microscopy, laser welding caused central fusion and recristallizations were formed and tungsten arc welding caused localized fusion to 0.3-0.7mm from the surface.

  • PDF

Microstructure investigation of iron artifacts excavated from No. 3 tomb of Bogam-ri in Naju City, Chollanam-do Province (나주 복암리 3호분 출토 철제유물의 금속학적 조사)

  • Yu, Jae-Eun;Go, Hyeoung-Sun;Hwong, Jin-Ju
    • 보존과학연구
    • /
    • s.22
    • /
    • pp.115-132
    • /
    • 2001
  • No. 3 Tomb of Bogam-ri, in Naju City, Chollanam-do Province, was a site excavated and inspected from 1996 to 1998 and had a various grave forms, including jar-coffins, stone-chambers and stone-cists. Although most of the metal artifacts excavated from it were severely corroded, we could implement microstructure investigation by collecting samples from the iron axes, iron coffin-nails and iron clamps in which the metal parts were remained. The metal structures were inspected by using metallographic microscope and SEM, and fine components analysis was implemented by ICP. To examine the hardness differences in accordance with the structure distribution, we measured the hardness by structures with Vickers hardness testing machine. As a result of the metal structure inspection, most of them were pure iron, ferrite, and also pearlite, cementite and widmannstaten structures were displayed. We could confirm carbonization was formed on the surface of the iron axes-B, iron coffin-nails-B, and iron clamps-A. There was no carbonization in the rest of the artifacts, and it is not certain that whether the carbonized parts were peeled off through extreme corrosion or they were not carbonized when they were made. In the particular part of a blade, the quality of the material was strengthened through processing. Due to the processing re-grain was caused and fine grain particles were formed. As a result of the ICP component analysis, there were no addition atoms because pure irons were used as materials. In the mean time, No. 17 jar-coffin where the iron axes-A are excavated, is chronologically ordered as from the late-fourth century to the mid-fifth century, and No. 1 and No. 2 stone chambers, where the rest of the artifacts were excavated, as the early-sixth century. It was difficult to relate the periodic differences with the manufacture technique artifacts which we inspected because there were no distinct characteristics of the manufacture technique of the metal structures and it is impossible to conclude the artifacts and sites are at the same period although their periods are different.

  • PDF

Characteristics of electrically conductive adhesives filled with silver-coated copper

  • Nishikawa, Hiroshi;Terad, Nobuto;Miyake, Koich;Aoki, Akira;Takemoto, Tadashi
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.217-220
    • /
    • 2009
  • Conductive adhesives have been investigated for use in microelectronics packaging as a lead-free solder substitute due to their advantages, such as low bonding temperature. However, high resistivity and poor mechanical behavior may be the limiting factors for the development of conductive adhesives. The metal fillers and the polymer resins provide electrical and mechanical interconnections between surface mount device components and a substrate. As metal fillers used in conductive adhesives, silver is the most commonly used due to its high conductivity and the stability. However the cost of conductive adhesives with silver fillers is much higher than usual lead-free solders and silver has poor electro-migration performance. So, copper can be a promising candidate for conductive filler metal due to its low resistivity and low cost, but oxidation causes this metal to lose its conductivity. In this study, electrically conductive adhesives (ECAs) using surface modified copper fillers were developed. Especially, in order to overcome the problem associated with the oxidation of copper, copper particles were coated with silver, and the silver-coated copper was tested as a filler metal. Especially the effect of silver coating on the electrical resistance just after curing and after aging was investigated. As a result, it was found that the electrical resistance of ECA with silver-coated copper filler was clearly lower and more stable than that of ECA with pure copper filler after curing process. And, during high temperature storage test, the degradation rate of electrical resistance for ECA with silver coated copper filler was quite slower than that for ECA with pure copper filler.

  • PDF