• Title/Summary/Keyword: Pure Iron

Search Result 192, Processing Time 0.028 seconds

Effect of Particle Size on Compactibility of Water-atomized Pure Iron Powder (수분사법으로 제조된 순철분말의 성형성에 미치는 분말크기의 영향)

  • Lee, Dong-Jun;Yoon, Eun-Yoo;Kim, Ha-Neul;Kang, Hee-Soo;Lee, Eon-Sik;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.221-225
    • /
    • 2011
  • In the current study, the effects of particle size on compaction behavior of water-atomized pure iron powders are investigated. The iron powders are assorted into three groups depending on the particle size; 20-45 ${\mu}M$, 75-106 ${\mu}M$, and 150-180 ${\mu}M$ for the compaction experiments. The powder compaction procedures are processed with pressure of 200, 400, 600, and 800 MPa in a cylindrical die. After the compaction stage, the group having 150-180 ${\mu}M$ of particle size distribution shows the best densification behavior and reaches the highest green density. The reason for these results can be explained by the largest average grain size in the largest particle group, due to the low plastic deformation resistance in large grain sized materials.

Mechanical Properties of Sintered Steel of Pure Iron Powder and Iron Powder Coated with Phosphorus (순철분말과 인(P)이 피복된 철분말 소결강의 기계적 성질)

  • 정재우
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.181-189
    • /
    • 1994
  • The compacts of pure and phosphorus-coated iron powder with 0~0.8%C were sintered at $1100^{\circ}C$ for 40 min. in cracked ammonia gas atmosphere. The tensile and impact strengths were measured and the relationship of the results with carbon content, phosphorus, quenching and tempering was investigated. The results obtained can be summarized as follows : (1) The tensile strength of sintered compacts increased slowly with carbon content. Increase in tensile strength by heat treatment was evident especially in the low carbon specimen. The specimen with phosphorus showed higher strength compared to pure iron compacts value. (2) No inflection point of elasticplastic deformation on stress-strain curve was observed in sintered steel. The elastic modulus of sintered steel had the same tendency as tensile strength. But the elongation showed the opposite tendency. (3) The impact absorption energy of sintered steel without addition of phosphorus decreased successively with carbon content and by quenching and tempering. On the contrary, addition of phosphorus resulted in an increase of the impact absorption energy. Quenching and tempering did not affect the impact energy especially in high carbon content. (4) The main fracture source was pore in specimen and the propagation of crack occured mostly along the grain boundaries. But the intragranular fracture was also observed in high carbon, quenched and tempered specimen, and especially in the specimen with phosphorus.

  • PDF

Densification and Nanocrystallization of Water-Atomized Pure Iron Powder Using High Pressure Torsion (수분사법으로 제조된 순철 분말의 고압비틀림 성형 공정에 의한 치밀화 및 나노결정화)

  • Yoon, Eun-Yoo;Lee, Dong-Jun;Kim, Ha-Neul;Kang, Hee-Soo;Lee, Eon-Sik;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.411-416
    • /
    • 2011
  • In this study, powder metallurgy and severe plastic deformation by high-pressure torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. Water-atomized pure iron powders were consolidated to disc-shaped samples at room temperature using HPT of 10 GPa up to 3 turns. The resulting microstructural size decreases with increasing strain and reaches a steady-state with nanocrystalline (down to ~250 nm in average grain size) structure. The water-atomized iron powders were deformed plastically as well as fully densified, as high as 99% of relative density by high pressure, resulting in effective grain size refinements and enhanced microhardness values.

Consolidation of Iron Nanopowder by Nanopowder-Agglomerate Sintering at Elevated Temperature

  • Lee, Jai-Sung;Yun, Joon-Chul;Choi, Joon-Phil;Lee, Geon-Yong
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • The key concept of nanopowder agglomerate sintering (NAS) is to enhance material transport by controlling the powder interface volume of nanopowder agglomerates. Using this concept, we developed a new approach to full density processing for the fabrication of pure iron nanomaterial using Fe nanopowder agglomerates from oxide powders. Full density processing of pure iron nanopowders was introduced in which the powder interface volume is manipulated in order to control the densification process and its corresponding microstructures. The full density sintering behavior of Fe nanopowders optimally size-controlled by wet-milling treatment was discussed in terms of densification process and microstructures.

Study on the Alumina Extraction from Kaolin (고령토로부터 알루미나 추출에 관한 연구)

  • 맹중재;김철주;신병식
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.1
    • /
    • pp.35-41
    • /
    • 1980
  • Alumina extraction from raw Hadong kaolin with sulfuric acid was studied to obtain relatively pure alumina. Factors as acid concentration, heating temperature and conditions of ammonium alum crystal formation from extracted solution are also surveyed and most of iron oxide in kaolin is eliminated in crystallization of ammonium alum. Pure crystal obtained from the extracted solution with ammonium sulfate is relatively free from iron containment in mother liquor. Alumina in ammonium alum crystal is converted to gibbsite form after complete hydrolysis in ammonia gas.

  • PDF

Experimental Study on Structural Characteristics of Machine Bed Model Using Epoxy-Granite Material (에폭시 그래나이트재를 이용한 공작기계 베드 모델의 구조 특성에 관한 실험적 연구)

  • Maeng, H.Y.;Park, Y.I.;Won, S.T.;Kim, J.H.;Lee, H.S.;Park, J.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 1994
  • This study is to develop a new composite material, a mixture of epoxy resin and granite aggergates which is called Expoxy-Granite, to overcome the inherent disadvantages of conventional materials commonly used as a bed structure material of long-term dimensional/ thermal stability. Under the various manufacturing conditions which could be formulated through experimental investigation, we have constructed 6 kinds of Epoxy-Granite structure models having one fifth the size of the ultra-precision machine tool bed structure. They are compared with cast iron and pure granite models through the dynamic test and the thermal deformation test. Both in the steel ball dropping test and in the forced vibration test, three types of epoxy-granite models made in this study have shown much better dynamic characteristics than the cast iron model and almost the same characteristics as compared with the pure granite model. In the thermal deformation test the above composite materials have also represented lower thermal displacements in the vertical direction of each model as compared with other specimens. It is therefore seen that the epoxy-granite complsite material can be applied to the construction of high-precision machine tool bed, instead of cast iron or pure granite.

  • PDF

Initial oxidation behavior in High temperature of low carbonsteel containing small amount Ni element. (미량 Ni 함유 저 합금강의 고온초기 산화거동)

  • 손근수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.179-184
    • /
    • 1999
  • When the steel containing Si is oxidated in hi temperature, Re2O3, Red scale is made on the metal side as the spike phase, and this scale invasion into matrix. Therefore, it affects the feature, after rolling. It is reported that the role of Si is FeO/Fe2SiO4 eutectic compound, but Si can not affect pure iron independently. There must be Ni, then the spike phase can exist. Prominence and depression made by Ni that is necessity at the process to work iron. Therefore, in this study after the change of the amount of Ni in pure iron and steel and oxidation, the structure of the oxide and the surface, and the distribution of the elements were considered. In conclusion, at 100$0^{\circ}C$, 110$0^{\circ}C$, 120$0^{\circ}C$ the curves of oxidation weight are all S curves. Especially, in the beginning of oxidation as the amount of Ni increase, the amount of oxidation also increase. Practical steel has less oxidation than pure steel added Ni. There is much FeO in Fe-Ni alloy, compare to practical steel which has much Fe3O4. Especially, we could know considerable Ni was concentrated on the metal side in Fe-Ni alloy, practical steel. and the surface of the scale.

  • PDF

The Characteristics of Compound Layers Formed during Plasma Nitrocarburising in Pure Iron (플라즈마 침질탄화처리된 순철의 화합물층 특성)

  • Cho, H.S.;Lee, S.Y.;Bell, T.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.143-150
    • /
    • 2000
  • Ferritic plasma nitrocarburising was performed on pure iron using a modified DC plasma unit. This investigation was carried out with various gas compositions which consisted of nitrogen, hydrogen and carbon monoxide gases, and various gas pressures for 3 hours at $570^{\circ}C$. After treatment, the different cooling rates(slow cooling and fast cooling) were used to investigate its effect on the structure of the compound layer. The ${\varepsilon}$ phase occupied the outer part of the compound layer and ${\gamma}^{\prime}$ phase existed between the ${\varepsilon}$ phase and the diffusion zone. The gas composition of the atmosphere influenced the constitution of the compound layer produced, i.e. high nitrogen contents were essential for the production of ${\varepsilon}$ phase compound layer. It was found that with increasing carbon content in the gas mixture the compound layer thickness increased up to 10%. In the gas pressure around 3 mbar, the compound layer characteristics were slightly effected by gas pressure. However, in the low gas pressure and high gas pressure, the compound layer characteristics were significantly changed. The constitution of the compound layer was altered by varying the cooling rate. A large amount of ${\gamma}^{\prime}$ phase was transformed from the ${\varepsilon}$ phase during slow cooling.

  • PDF

Microstructure investigation of iron artifacts excavated from No. 3 tomb of Bogam-ri in Naju City, Chollanam-do Province (나주 복암리 3호분 출토 철제유물의 금속학적 조사)

  • Yu, Jae-Eun;Go, Hyeoung-Sun;Hwong, Jin-Ju
    • 보존과학연구
    • /
    • s.22
    • /
    • pp.115-132
    • /
    • 2001
  • No. 3 Tomb of Bogam-ri, in Naju City, Chollanam-do Province, was a site excavated and inspected from 1996 to 1998 and had a various grave forms, including jar-coffins, stone-chambers and stone-cists. Although most of the metal artifacts excavated from it were severely corroded, we could implement microstructure investigation by collecting samples from the iron axes, iron coffin-nails and iron clamps in which the metal parts were remained. The metal structures were inspected by using metallographic microscope and SEM, and fine components analysis was implemented by ICP. To examine the hardness differences in accordance with the structure distribution, we measured the hardness by structures with Vickers hardness testing machine. As a result of the metal structure inspection, most of them were pure iron, ferrite, and also pearlite, cementite and widmannstaten structures were displayed. We could confirm carbonization was formed on the surface of the iron axes-B, iron coffin-nails-B, and iron clamps-A. There was no carbonization in the rest of the artifacts, and it is not certain that whether the carbonized parts were peeled off through extreme corrosion or they were not carbonized when they were made. In the particular part of a blade, the quality of the material was strengthened through processing. Due to the processing re-grain was caused and fine grain particles were formed. As a result of the ICP component analysis, there were no addition atoms because pure irons were used as materials. In the mean time, No. 17 jar-coffin where the iron axes-A are excavated, is chronologically ordered as from the late-fourth century to the mid-fifth century, and No. 1 and No. 2 stone chambers, where the rest of the artifacts were excavated, as the early-sixth century. It was difficult to relate the periodic differences with the manufacture technique artifacts which we inspected because there were no distinct characteristics of the manufacture technique of the metal structures and it is impossible to conclude the artifacts and sites are at the same period although their periods are different.

  • PDF

External Field Dependence of $Fe^57$ NMR in Pure Iron

  • Dho, Joongheo;Kim, Mincheol;Lee, Soonchil;Lee, Wonjong;Kim, Yoonbae
    • Journal of Magnetics
    • /
    • v.1 no.1
    • /
    • pp.14-18
    • /
    • 1996
  • The NMR spin echo in pure iron was measured as a function of external magnetic field up to 10 kgauss at room temperature. We observed the signal coming from a single domain formed over 7.5 kgauss which has not been detected in previous works. The resonance frequency shift with external field confirmed that the hyperfine field in iron is -330.2 kgauss. From the comparison of the magnetization curve with the domain wall signal and the resonance frequency in external field, we showed that NMR could give the useful qualitative information on the magnetization process. The extent of the internal strain removed by annealing, which can be hardly seen in hysteresis curves, was clearly shown up in the NMR line-width.

  • PDF