• Title/Summary/Keyword: Pure Efficiency Change

Search Result 50, Processing Time 0.02 seconds

Reactive Ceramic Membrane Incorporated with Iron Oxide Nanoparticle for Fouling Control (산화철 나노입자 부착 반응성 세라믹 멤브레인의 막 오염 제어)

  • Park, Hosik;Choi, Heechul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.144-150
    • /
    • 2013
  • Hybrid ceramic membrane (HCM) processes that combined ozonation with a ceramic membrane (CM) or a reactive ceramic membrane (RM), an iron oxide nanoparticles (IONs) incorporated-CM were investigated for membrane fouling control. Alumina disc type microfiltration and ultrafiltration membranes doped with IONs by sintering method were tested under varying mass fraction of IONs. Scanning electron microscope (SEM) images showed that IONs were well-doped on the CM surface and doped IONs were approximately 50 nm in size. Change in the pure water permeability of RM was negligible compared to that of CM. These results indicate that IONs incorporation onto CM had little effect on CM performance in terms of the flux. Natural organic matter (NOM) fouling and fouling recovery patterns during HCM processes confirmed that the RM-ozonation process enhanced the destruction of NOM and reduced the extent of fouling more than the CM-ozonation process by hydroxyl radical formation in the presence of IONs on RM. In addition, analyses of NOM in the feed water and the permeate showed that the efficiency of membrane fouling control results from the NOM degradation during HCM processes; leading to removal and transformation of relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions.

Preparation and characterization of PVDF/alkali-treated-PVDF blend membranes

  • Liu, Q.F.;Li, F.Z.;Guo, Y.Q.;Dong, Y.L.;Liu, J.Y.;Shao, H.B.;Fu, Z.M.
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.417-431
    • /
    • 2016
  • Poly(vinylidene fluoride) (PVDF) powder was treated with aqueous sodium hydroxide to obtain partially defluorinated fluoropolymers with expected properties such as improving hydrophilicity and fouling resistance. Raman spectrum and FT-IR results confirmed the existence of conjugated carbon double bonds after alkaline treatment. As the concentration increased, the degree of defluorination increased. The morphology and structure of membranes were examined. The permeation performance was investigated. The results showed that membrane's hydrophilicity increased with increase of the percentage of alkaline treated PVDF powder. Moreover, in terms of the water contact angle, it decreased from $92^{\circ}$ to a minimum of $68^{\circ}$; while water up take increased from 128 to 138%. Fluxof pure water and the cleaning efficiency increased with the increase of alkaline treated PVDF powder. The fouling potential also decreased with the increase of the percentage of alkaline treated PVDF powder. The reason that makes blending PVDF show different characteristics because of partial defluorination, which led the formation of conjugated C = C bonds and the inclusion of oxygen functionalities. The polyene structure followed by hydroxide attack to yield hydroxyl and carbonyl groups. Therefore, the hydrophilicity of blending membrane was improved. The SEM and porosity measurements showed that no obvious variations of the pore dimensions and structures for blend membranes were observed. Mechanical tests suggest that the high content of the alkaline treated PVDF result in membranes with less tolerance of tensile stress and higher brittleness. TGA results exhibited that the blend of alkaline treated PVDF did not change membrane thermal stability.

The Economic Impacts of Subsidizing Water Industry Under Greenhouse Gases Mitigation Policy in Korea: A CGE Modeling Approach (국가 온실가스 저감정책과 물산업 지원의 경제적 영향 분석 - 연산일반균형모형 분석)

  • Kim, Jae Joon;Park, Sung Je
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.12
    • /
    • pp.1201-1211
    • /
    • 2012
  • This paper constructed the single country sequential dynamic CGE model to analyze the economic impacts of subsidizing water industry under the GHG emission abatement policy in Korea. We introduced the carbon tax to reduce the GHG emission and made two scenarios. One is to transfer the total tax revenue to household. The other is to mix the tax transfer and water industry support. Our Simulation results show that the macroeconomic effects might be positive by subsidizing water industry compared with the pure tax transfer. However, the support of water industry doesn't contribute to head for the non-energy intensive economy because it's economic activity highly depend on fossil energy and energy intensive products as intermediate demand. This means that it is important to make efforts on the cost effective measures such as energy technology progress, alternative energy development, and energy efficiency improvement in water industry against climate change policy.

Preparation of graphene oxide incorporated polyamide thin-film composite membranes for PPCPs removal

  • Wang, Xiaoping;Li, Nana;Zhao, Yu;Xia, Shengji
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.211-220
    • /
    • 2018
  • Incorporating nano-materials in thin-film composite (TFC) membranes has been considered to be an approach to achieve higher membrane performance in various water treatment processes. This study investigated the rejection efficiency of three target compounds, i.e., reserpine, norfloxacin and tetracycline hydrochloride, by TFC membranes with different graphene oxide proportions. Graphene oxide (GO) was incorporated into the polyamide active layer of a TFC membrane via an interfacial polymerization (IP) reaction. The TFC membranes were characterized with FTIR, FE-SEM, AFM; in addition, the water contact angle measurements as well as the permeation and separation performance were evaluated. The prepared GO-TFC membranes exhibited a much higher flux ($3.11{\pm}0.04L/m2{\cdot}h{\cdot}bar$) than the pristine TFC membranes ($2.12{\pm}0.05L/m2{\cdot}h{\cdot}bar$) without sacrificing their foulant rejection abilities. At the same time, the GO-modified membrane appeared to be less sensitive to pH changes than the pure TFC membrane. A significant improvement in the anti-fouling property of the membrane was observed, which was ascribed to the favorable change in the membrane's hydrophilicity, surface morphology and surface charge through the addition of an appropriate amount of GO. This study predominantly improved the understanding of the different PA/GO membranes and outlined improved industrial applications of such membranes in the future.

Exploration of shockwaves on polymeric membrane physical properties and performance

  • Lakshmi, D. Shanthana;Saxena, Mayank;Ekambaram, Shivakarthik;Sivaraman, Bhalamurugan
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2021
  • The Commercial polymeric membranes like Polysulfone (PSF), Polyvinylidene difluoride (PVDF) and Polyacrylonitrile (PAN) which are an integral part of water purification investigation were chosen for the shockwave (SW) exposure experiment. These membranes were prepared by blending polymer (wt. %) / DMF (solvent) followed by phase-inversion casting technique. Shockwaves are generated by using Reddy Tube lab module (Table-top Shocktube) with range of pressure (1.5, 2.5 and 5 bar). Understanding the changes in membrane before and after shock wave treatment by parameters, i.e., pure water flux (PWF), rejection (%), porosity, surface roughness (AFM), morphology (SEM) and contact angle which can significantly affect the membrane's performance. Flux values PSf membranes shows increase, 465 (pristine) to 524 (1.5wt%) LMH at 50 Psi pressure and similar enhancement was observed at 100Psi (625 to 696 LMH). Porosity also shows improvement from 73.6% to 76.84% for 15wt% PSf membranes. It was observed that membranes made of polymers such as PAN and PSF (of high w/w %) exhibits some resistance against shockwaves impact and are stable compared to other membranes. Shockwave pressure of up to 1.5 bar was sufficient enough to change properties which are crucial for performance. Membranes exposed to a maximum pressure of 5 bar completely scratched the surface and with minimum pressure of 1.5bar is optimum enough to improve the water flux and other parameters. Initial results proved that SW may be suitable alternative route to minimize/control membrane fouling and improve efficiency.

The Relationship Between DEA Model-based Eco-Efficiency and Economic Performance (DEA 모형 기반의 에코효율성과 경제적 성과의 연관성)

  • Kim, Myoung-Jong
    • Journal of Environmental Policy
    • /
    • v.13 no.4
    • /
    • pp.3-49
    • /
    • 2014
  • Growing interest of stakeholders on corporate responsibilities for environment and tightening environmental regulations are highlighting the importance of environmental management more than ever. However, companies' awareness of the importance of environment is still falling behind, and related academic works have not shown consistent conclusions on the relationship between environmental performance and economic performance. One of the reasons is different ways of measuring these two performances. The evaluation scope of economic performance is relatively narrow and the performance can be measured by a unified unit such as price, while the scope of environmental performance is diverse and a wide range of units are used for measuring environmental performances instead of using a single unified unit. Therefore, the results of works can be different depending on the performance indicators selected. In order to resolve this problem, generalized and standardized performance indicators should be developed. In particular, the performance indicators should be able to cover the concepts of both environmental and economic performances because the recent idea of environmental management has expanded to encompass the concept of sustainability. Another reason is that most of the current researches tend to focus on the motive of environmental investments and environmental performance, and do not offer a guideline for an effective implementation strategy for environmental management. For example, a process improvement strategy or a market discrimination strategy can be deployed through comparing the environment competitiveness among the companies in the same or similar industries, so that a virtuous cyclical relationship between environmental and economic performances can be secured. A novel method for measuring eco-efficiency by utilizing Data Envelopment Analysis (DEA), which is able to combine multiple environmental and economic performances, is proposed in this report. Based on the eco-efficiencies, the environmental competitiveness is analyzed and the optimal combination of inputs and outputs are recommended for improving the eco-efficiencies of inefficient firms. Furthermore, the panel analysis is applied to the causal relationship between eco-efficiency and economic performance, and the pooled regression model is used to investigate the relationship between eco-efficiency and economic performance. The four-year eco-efficiencies between 2010 and 2013 of 23 companies are obtained from the DEA analysis; a comparison of efficiencies among 23 companies is carried out in terms of technical efficiency(TE), pure technical efficiency(PTE) and scale efficiency(SE), and then a set of recommendations for optimal combination of inputs and outputs are suggested for the inefficient companies. Furthermore, the experimental results with the panel analysis have demonstrated the causality from eco-efficiency to economic performance. The results of the pooled regression have shown that eco-efficiency positively affect financial perform ances(ROA and ROS) of the companies, as well as firm values(Tobin Q, stock price, and stock returns). This report proposes a novel approach for generating standardized performance indicators obtained from multiple environmental and economic performances, so that it is able to enhance the generality of relevant researches and provide a deep insight into the sustainability of environmental management. Furthermore, using efficiency indicators obtained from the DEA model, the cause of change in eco-efficiency can be investigated and an effective strategy for environmental management can be suggested. Finally, this report can be a motive for environmental management by providing empirical evidence that environmental investments can improve economic performance.

  • PDF

Combustion Characteristics of Landfill Gas in Constant Volume Combustion Chamber for Large Displacement Volume Engine (I) - Fundamental Characteristics - (대형기관 모사 정적연소실에서 매립지 가스의 연소특성에 대한 연구 (I) - 기초 특성 -)

  • Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.733-741
    • /
    • 2013
  • This is the first paper on the combustion characteristics of landfill gas in a constant volume combustion chamber for a large displacement volume commercial engine, and it discusses the fundamental characteristics of fuel from the viewpoint of thermochemistry and thermodynamics and compares these results with experimental ones. The results show that the final pressures obtained from theoretical analysis vary under the same heating value owing to the change in the constant volume specific heat owing to the difference in the burned gas composition according to the fuel gas compositions; furthermore, the stoichiometric ratios and trends of analytical and experimental pressures coincide very well, although some minor differences are observed between the two. The root cause of the difference is the heat transfer, which changes the specific heat and lowers the temperature considerably, in the real combustion process. In addition, the large chamber volume and ignition position promote the heat transfer to the wall. Finally, the fuel conversion efficiency increases as the methane mol fraction decreases, and it is maximum when the stoichiometric ratio ranges from 0.8 to 0.9. These increases due to the composition and stoichiometric ratio could sufficiently compensate the decrease due to the specific heat ratio drop, LFG might be more advantageous than pure methane in a real engine.

Improvement of Fouling in Membrane Separation Process for Leachate Treatment using Ultrasound(I) : Analysis of Ultrasonic Parameters (초음파를 이용한 침출수 처리를 위한 막분리 공정의 막힘현상 개선(I) : 초음파의 영향인자 평가)

  • Kim, Seok-Wan;Lim, Jae-Lim;Lee, Jun-Geol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.197-206
    • /
    • 2006
  • This study evaluated the effect of ultrasonic irradiation on improving the flux and cleaning efficiency in membrane process which is widely applied for the treatment of landfill leachate. The experiments on improvement of membrane flux according to the types of membranes(hallowfiber microfiltration, MF and tubular ultrafiltration, UF) were performed with changing frequency($40{\sim}120$ kHz), intensity ($200{\sim}500$ W) and irradiation time of ultrasound as well us operation pressure($0.1{\sim}2.3kg/cm^2$). Membrane was fouled for the first 50 min with primary treated leachate and then the change in flux according to ultrasonic irradiation period was observed for 70 min. Parameters influenced to the recovery ratio corresponding the net flux on pure water and to the enhancement ratio applied after ultrasonic irradiation on the flux were analyzed. In same condition, the flux was improved in proportion to ultrasonic intensity while the improvement of flux was inversely proportional to ultrasonic frequency. The cleaning effect of membrane was delayed and reduced when operation pressure of membrane was high. The recovery ratio and enhancement ratio for $0.1{\mu}m$ MF membrane were 10% and 500%, respectively while those were maximized at $75{\sim}98%\;and\;40{\sim}50%$ for UF membrane for 10,000 and 100,000 MWCO, respectively. In conclusion, it was confirmed that ultrasonic cleaning using mechanical vibration is alternative to water or chemical cleaning for improving membrane flux.

BTEX Biodegradation in Contaminated Soil Samples Using Pure Isolates and Changes in the Mixed Microbial Community Structure (순수 분리 미생물을 이용한 오염 토양에서의 BTEX 생분해 특성과 미생물 군집 변화)

  • Chung, Kyung-Mi;Choi, Yong-Su;Hong, Seok-Won;Lee, Soo-Jin;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.757-763
    • /
    • 2006
  • In our previous studies, we have isolated bacteria from BTEX-contaminated sediment, which utilized BTEX as a sole carbon source and $NO_3$-N as an electron acceptor. For the possibility of field application, we have applied co-culture of those isolates in the BTEX-contaminated soil and evaluated their biodegradation efficiencies. To investigate the relationship between the isolates and indigenous microorganism in soil, changes of microbial community structure in soil samples with respect to time were monitored. To examine this, soil samples were artificially contaminated with benzene, toluene, ethylbenzene and o-xylene. BTEX-degrading bacteria such as Pseudomonas stutzeri strain 15(DQ 202712), Klebsiells sp. strain 20(DQ 202715) and Citrobacter sp. strain A(DQ 202713) were injected into the soil samples in the ratio of 2:1:1. Our results showed that the highest BTEX biodegradation efficiency was achieved when both BTEX and $NO_3-N$ existed simultaneously. The change in soil microbial community structure was characterized by PCR-DGGE analysis comparing the relative DGGE band intensities. The band intensities of indigenous microorganisms in the soil were reduced by injecting co-culture of the three isolates. On the contrary, the relative band intensities of the isolates were increased. Among the three isolates, Pseudomonas stutzeri strain 15 rendered the highest band intensity. This indicates that the Pseudomonas stutzeri was the dominant microbial species found in the soil samples.

Simulation and Sensitivity Analysis of the Air Separation Unit for SNG Production Relative to Air Boosting Ratios (SNG 생산용 공기분리공정의 공기 재 압축비에 따른 민감도 분석)

  • Kim, Mi-yeong;Joo, Yong-Jin;Seo, Dong Kyun;Shin, Jugon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.173-179
    • /
    • 2019
  • Cryogenic air separation unit produces various gases such as $N_2$, $O_2$, and Ar by liquefying air. The process also varies with diverse production conditions. The one for SNG production among them has lower efficiency compared to other air separation unit because it requires ultrapure $O_2$ with purity not lower than 99.5%. Among factors that reduce the efficiency of air separation unit, power consumption due to compress air and heat duty of double column were representatives. In this study, simulation of the air separation unit for SNG production was carry out by using ASEPN PLUS. In the results of the simulation, 18.21 kg/s of at least 99.5% pure $O_2$ was produced and 33.26 MW of power was consumed. To improve the energy efficiency of air separation unit for SNG production, the sensitivity analysis for power consumption, purities and flow rate of $N_2$, $O_2$ production in the air separation unit was performed by change of air boosting ratios. The simulated model has three types of air with different pressure levels and two air boosting ratio. The air boosting ratio means flow rate ratio of air by recompressing in the process. As increasing the first air boosting ratio, $N_2$ flow rate which has purity of 99.9 mol% over increase and $O_2$ flow rate and purity decrease. As increasing the second air boosting ratio, $N_2$ flow rate which has purity of 99.9 mol% over decreases and $O_2$ flow rate increases but the purity of $O_2$ decreases. In addition, power consumption of compressing to increase in the two cases but results of heat duty in double column were different. The heat duty in double column decreases as increasing the first air boosting ratio but increases as increasing the second air boosting ratio. According to the results of the sensitivity analysis, the optimum air boosting ratios were 0.48 and 0.50 respectively and after adjusting the air boosting ratios, power consumption decreased by approximately 7% from $0.51kWh/O_2kg$ to $0.47kWh/O_2kg$.