• 제목/요약/키워드: Pure Copper

검색결과 206건 처리시간 0.024초

Characteristics of electrically conductive adhesives filled with silver-coated copper

  • Nishikawa, Hiroshi;Terad, Nobuto;Miyake, Koich;Aoki, Akira;Takemoto, Tadashi
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.217-220
    • /
    • 2009
  • Conductive adhesives have been investigated for use in microelectronics packaging as a lead-free solder substitute due to their advantages, such as low bonding temperature. However, high resistivity and poor mechanical behavior may be the limiting factors for the development of conductive adhesives. The metal fillers and the polymer resins provide electrical and mechanical interconnections between surface mount device components and a substrate. As metal fillers used in conductive adhesives, silver is the most commonly used due to its high conductivity and the stability. However the cost of conductive adhesives with silver fillers is much higher than usual lead-free solders and silver has poor electro-migration performance. So, copper can be a promising candidate for conductive filler metal due to its low resistivity and low cost, but oxidation causes this metal to lose its conductivity. In this study, electrically conductive adhesives (ECAs) using surface modified copper fillers were developed. Especially, in order to overcome the problem associated with the oxidation of copper, copper particles were coated with silver, and the silver-coated copper was tested as a filler metal. Especially the effect of silver coating on the electrical resistance just after curing and after aging was investigated. As a result, it was found that the electrical resistance of ECA with silver-coated copper filler was clearly lower and more stable than that of ECA with pure copper filler after curing process. And, during high temperature storage test, the degradation rate of electrical resistance for ECA with silver coated copper filler was quite slower than that for ECA with pure copper filler.

  • PDF

동폐수용액으로부터 수소환원법에 의한 동의 회수 (Recovery of Copper from Waste Water by $H_2$Reduction)

  • 서영식;이종현;원창완
    • 자원리싸이클링
    • /
    • 제3권3호
    • /
    • pp.7-11
    • /
    • 1994
  • $\alpha$-Etchent 부식액과 순수동액을 수소환원시킴으로 아래와 같은 결과를 얻었다. (1) 수소압 및 교반속도가 증가함에 따라 각각 300psi, 500rpm까지는 동의 회수율은 증가하다가 그 이상에서는 오히려 감소하였으나, 반응온도에는 거의 영향을 받지 않았다. 이때 동의 회수율은 순수동용액 및 $\alpha$-Etchent 용액에서 최대 각각 약 90% 및 60%이었다. 또한 모든 실험에 있어 순수동용액이 $\alpha$-Etchent 부식액에서 보다 약 30~40% 동의 회수율이 증가하였다. (2) 반응시간이 증가하면 약 30분까지는 동의 회수율이 증가하지만 그 이상에서는 거의 변화가 없었다. 이때 반응초기에는(30분까지) 침상형의 동분말이었지만 그 이상에서는 포도송이 모양의 noudle 형태로 성장되었고, 분말의 크기는 약 $2~3\mu\textrm{m}$이었다.

  • PDF

구리 합금을 위한 초고융점 원소의 용융산화물 확산 공정 (Diffusion of the High Melting Temperature Element from the Molten Oxides for Copper Alloys)

  • 송정호;노윤영;송오성
    • 한국재료학회지
    • /
    • 제26권3호
    • /
    • pp.130-135
    • /
    • 2016
  • To alloy high melting point elements such as boron, ruthenium, and iridium with copper, heat treatment was performed using metal oxides of $B_2O_3$, $RuO_2$, and $IrO_2$ at the temperature of $1200^{\circ}C$ in vacuum for 30 minutes. The microstructure analysis of the alloyed sample was confirmed using an optical microscope and FE-SEM. Hardness and trace element analyses were performed using Vickers hardness and WD-XRF, respectively. Diffusion profile analysis was performed using D-SIMS. From the microstructure analysis results, crystal grains were found to have formed with sizes of 2.97 mm. For the copper alloys formed using metal oxides of $B_2O_3$, $RuO_2$, and $IrO_2$ the sizes of the crystal grains were 1.24, 1.77, and 2.23 mm, respectively, while these sizes were smaller than pure copper. From the Vickers hardness results, the hardness of the Ir-copper alloy was found to have increased by a maximum of 2.2 times compared to pure copper. From the trace element analysis, the copper alloy was fabricated with the expected composition. From the diffusion profile analysis results, it can be seen that 0.059 wt%, 0.030 wt%, and 0.114 wt% of B, Ru, and Ir, respectively, were alloyed in the copper, and it led to change the hardness. Therefore, we verified that alloying of high melting point elements is possible at the low temperature of $1200^{\circ}C$.

저온 분사 코팅법으로 제조된 Cu/CNT 복합 코팅층의 미세조직 및 물성 연구 (A Study on the Microstructure and Physical Properties of Cold Sprayed Cu/CNT Composite Coating)

  • 권성희;박동용;이대열;어광준;이기안
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.182-188
    • /
    • 2008
  • Carbon nanotubes(CNTs) have outstanding mechanical, thermal, and electrical properties. Thus, by placing nanotubes into appropriate matrix, it is postulated that the resulting composites will have enhanced properties. Cold spray can produce thick metal-based composite coatings with very high density, low oxygen content, and phase purity, which leads to excellent physical properties. In this study, we applied cold spray coating process for the consolidation of Cu/CNT composite powder. The precursor powder mixture, in which CNTs were filled into copper particles, was prepared to improve the distribution of the CNT in copper matrix. Pure copper coating was also conducted by cold spraying as a reference. Annealing heat treatment was applied to the coating to examine its effect on the properties of the composite coating. The hardness of Cu/CNT composite coating represented similar value to that of pure copper coating. It was importantly found that the electrical conductivity of the Cu/CNT composite coating significantly increased from 53% for the standard condition to almost 55% in the optimized condition, taking annealed ($500^{\circ}C/1hr$.) copper coating as a reference (100%). The thermal conductivity of Cu/CNT composite coating layer was higher than that of pure Cu coating. It was also found that the electrical and thermal conductivities of Cu/CNT composite could be improved through annealing heat treatment. The microstructural evolution of Cu/CNT coating was also investigated and related to the macroscopic properties.

순동선삭가공에서 AE 신호를 이용한 칩 형상 제어 (Chip Shape Control using AE Signal in Pure Copper Turning)

  • 오정규;김평호;구준영;김덕환;김정석
    • 한국생산제조학회지
    • /
    • 제23권4호
    • /
    • pp.330-336
    • /
    • 2014
  • The continuous chip generated in cutting process deteriorates workpiece, tool, and machine tool system. It is necessary to treat this continuous chip in ductile material machining condition for stable cutting. This paper deals with the chip control method using acoustic emission(AE) signal in pure copper turning operation. AE raw signals, root mean square(RMS) signals and wavelet transformed signals measured in turning process are introduced to analysis for chip patterns. With analysis of AE signals, it is obtained that the produced chip patterns are correlated with the specified AE signals which are transformed by fuzzy pattern algorithm. By this experimental investigation, the chip patterns can be classified at significant level in pure copper machining process and controlled from continuous chips to reduced-length stable chips.

Flexural studies on reinforced geopolymer concrete beams under pure bending

  • Sreenivasulu, C.;Jawahar, J. Guru;Sashidhar, C.
    • Advances in concrete construction
    • /
    • 제8권1호
    • /
    • pp.33-37
    • /
    • 2019
  • The present investigation is mainly focused on studying the flexural behavior of reinforced geopolymer concrete (RGPC) beams under pure bending. In this study, copper slag (CS) was used as a partial replacement of fine aggregate. Sand and CS were blended in different proportions (100:0, 80:20, 60:40 and 40:60) (sand:CS) by weight. Fly ash and ground granulated blast furnace slag (GGBS) were used as binders and combination of sodium hydroxide (8M) and sodium silicate solution were used for activating the binders. The reinforcement of RGPC beam was designed as per guidelines given in the IS 456-2000 and tested under pure bending (two-point loading) after 28 days of ambient curing. After conducting two point load test the flexural parameters viz., moment carrying capacity, ultimate load, service load, cracking moment, cracking load, crack pattern and ultimate deflection were studied. From the results, it is concluded that RGPC beams have shown better performance up to 60% of CS replacement.

PCB 산업에서 배출되는 산성 염화동 폐액으로부터 Copper Oxychloride의 제조 및 특성분석 (Preparation and Characterization of Copper Oxychloride from Acidic Copper Chloride Etchant)

  • 김영희;김수룡;정상진;이윤주;어영선
    • 자원리싸이클링
    • /
    • 제12권2호
    • /
    • pp.3-10
    • /
    • 2003
  • PCB (Printed Circuit Board) 산업에서 배출되는 산성 염화동 폐액으로부터 농약원제로 사용이 가능한 고순도의 copper oxycloride를 제조하였다. PCB제조 산업은 구리 소재를 이용한 전자 부품 가공 산업으로서 제조 공정인 부식 과정에서 다량의 구리가 함유된 에칭 폐액이 발생한다. 환경과 경제적인 측면에서 폐액으로부터 구리성분을 재회수하는 기술의 개발은 매우 중요하다. 본 연구에서는 가성소다로 폐액을 중화하여 copper oxychloride를 회수하는 공정의 반응 조건을 확립하였다. 반응 온도 2$0^{\circ}C$-4$0^{\circ}C$, pH 5-7 사이에서 순수한 copper oxychloride제조가 가능하였고 이때 수득율은 95% 이상이었다. 생성물의 물리적 특성을 SEM, XRD, TGA, ICP 그리고 원자 흡수 분광기를 사용하여 분석하였다.

Grain Refinement and Phase Transformation of Friction Welded Carbon Steel and Copper Joints

  • Lee, W.B.;Lee, C.Y.;Yeon, Y.M.;Kim, K.K.;Jung, S.B
    • International Journal of Korean Welding Society
    • /
    • 제3권2호
    • /
    • pp.46-52
    • /
    • 2003
  • The refinement of microstructure and phase transformation near the interface of pure copper/carbon steel dissimilar metals joints with various friction welding parameters have been studied in this paper. The microstructure of copper and carbon steel joints were changed to be a finer grain compared to those of the base metals due to the frictional heat and plastic deformation. The microstructure of copper side experienced wide range of deformed region from the weld interface and divided into very fine equaxied grains and elongated grains. Especially, the microstructures near the interface on carbon steel were transformed from ferrite and pearlite dual structure to fine ferrite, grain boundary pearlite and martensite due to the welding thermal cycle and rapid cooling rate after welding. These microstructures were varied with each friction welding parameters. The recrystallization on copper side is reason for softening in copper side and martensite transformation could explain the remarkable hardening region in carbon steel side.

  • PDF

이차전지 소재용 구리의 파이버 레이저 용접 특성에 관한 연구 (Study on Fiber Laser Welding Characteristics of Copper for Secondary Battery Material)

  • 박은경;이가람;이현중;유영태
    • 한국레이저가공학회지
    • /
    • 제17권3호
    • /
    • pp.1-9
    • /
    • 2014
  • In this study, we analyzed fiber laser welding for the pure copper thin plates in a series of secondary lithium-ion batteries; and performed the experiment for the purpose of the preceding study to replace bolt joints method the with the laser welding method. We have changed the peak power of the laser from 5 to 6kW, the pulse duration by 4, 6, 8, and 10ms, the frequency by 10, 12, 16, and 25Hz, and the focal position by -3, 0, and +3. As a result, when the focal position is at +3, the peak power is 5kW, and the pulse duration and the Frequency are 4ms and 25Hz, respectively, we obtain 2.1 and 2.5 times better tensional strengths, respectively, than the highest values of tensional strengths obtained with the focal positions at 0 and -3.

  • PDF

구리튜브를 피복재로 이용한 분말시스압연법에 의해 제조된 CNT/Al 복합재료의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of CNT/Al Composite Fabricated by a Powder-in-Sheath Rolling Method utilizing Copper Tube as a Sheath)

  • 이성희
    • 한국분말재료학회지
    • /
    • 제21권5호
    • /
    • pp.343-348
    • /
    • 2014
  • A powder-in-sheath rolling (PSR) process utilizing a copper alloy tube was applied to a fabrication of a multi-walled carbon nanotube (CNT) reinforced aluminum matrix composite. A copper tube with an outer diameter of 30 mm and a wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol% was filled in the tube by tap filling and then processed to 93.3% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the PSR decreased slightly with increasing of CNTs content, but showed high value more than 98%. The average hardness of the 5%CNT/Al composite increased more than 3 times, compared to that of unreinforced pure Al powder compaction. The hardness of the CNT/Al composites was some higher than that of the composites fabricated by PSR using SUS304 tube. Therefore, it is concluded that the type of tube affects largely on the mechanical properties of the CNT/Al composites in the PSR process.