• Title/Summary/Keyword: Pure Co

Search Result 866, Processing Time 0.025 seconds

Effects of Addition of Hydrogen and Water Vapor on Flame Structure and NOx Emission In $CH_4$-Air Diffusion Flame (메탄-공기 확산화염에서 수소와 수증기 첨가가 화염구조와 NOx 배출에 미치는 효과)

  • Park, Jeong;Keel, Sang-In;Yun, Jin-Han
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.171-181
    • /
    • 2007
  • Blending effects of hydrogen and water vapor on flame structure and NOx emission behavior are numerically studied with detailed chemistry in methane-air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane and pure hydrogen to the blending fuels of methane-hydrogen-water vapor through the molar addition of $H_2O$. Flame structure is changed considerably for hydrogen-blending methane flames and hydrogen-blending methane flames diluted with water vapor in comparison to pure methane flame. These complicated changes of flame structures also affect NOx emission behavior considerably. The changes of thermal NO and Fenimore NO are analyzed for various combinations of the fuel composition. Importantly contributing reaction steps to thermal NO and Fenimore NO are addressed in pure methane, hydrogen-blending methane flames, and hydrogen-blending methane flames diluted with water vapor.

A Study on the Sweating Process for High Purification of p-Dioxanone (파라디옥사논의 고순도 정제를 위한 발한(sweating) 공정에 관한 연구)

  • Kim, Sung-Il;Chun, Suk-Keun;Park, Du-Goan;Park, Keun-Ho;Park, So-Jin;Kim, Chul-Ung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.140-148
    • /
    • 2007
  • As an additional high purification method of p-dioxanone monomer for a high molecular weight polymer, the sweating operation of crystalline layer obtained by layered melt crystallization from p-dioxanone-diethylene glycol system was studied. Purity and yield of p-dioxanone crystal depended mainly on the sweating temperature and sweating time. Increasing sweating time and sweating temperature, the purity of p-dioxanone crystal increase, whereas the yield of that decrease, respectively. Through the optimization of sweating operation, p-dioxanone crystal can be upgraded to very high purity over 99.9 % suited to monomer for polymerization.

The study on crystallization for fine particles of Cyclotetramethylene-tetranitramine (Cyclotetramethylene-tetranitramine의 미세 입자 제조를 위한 결정화 연구)

  • Kim, Sung-Il;Chun, Suk-Keun;Park, Du-Goan;Park, Keun-Ho;Park, So-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.219-232
    • /
    • 2007
  • In T-mixer crystallization, supersaturation is generated by mixing of another solvent or non-solvent in order to reduce the solubility of the compound. Also, T-mixer is a type of continuous crystallization. In order to induce micro-mixing, two solutions were mixed rapidly by T-mixer, which formed high supersaturation. As the results, mean size of HMX crystals decreased with increasing de-supersaturation rate $(R_s)$. Eventually, HMX particles ranging from 0.5 to $5{\mu}m$ can be obtained by T-mixer crystallization. Mixing efficiency in T-mixer increased with increasing $R_s$ values. In T-mixer crystallization without surfactants, homogeneous nucleation was formed when S and $R_s$ was over 54 and $1.6{\times}10^3/sec$. In T-mixer crystallization with surfactants, homogeneous nucleation was formed when S and $R_s$ was over 26 and 7.4/sec.

A Study on the Efficient Purification Process of Dimethyl carbonate (Dimethyl Carbonate의 효율적인 정제공정 연구)

  • Lee, Sang-Won;Kim, Sung-Il;Chun, Suk-Keun;Park, Du-Goan;Park, Keun-Ho;Lee, Soo;Park, So-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.383-392
    • /
    • 2007
  • This paper is studied on the efficient purification process of dimethyl carbonate (DMC) from the melt layer crystallization combining crystallization process, sweating process and distillation recovery process. Purity and yield of DMC crystal depended mainly on the crystallization temperature, cooling rate, sweating termperature sweating rate. Through the optimization of crystallization and sweating operation, DMC crystal can be upgraded to very high purity over 99.9% and high yield over 85%.

Influence of Charging Amounts on the Cooling Performance of $CO_2/Propane$ Mixtures and Concentration Shift Behavior (이산화탄소/프로판 혼합냉매의 냉방성능에 대한 충전량의 영향 및 순환성분비 변화 특성)

  • Kim, Ju-Hyok;Hwang, Yun-Wook;Kim, Min-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.851-858
    • /
    • 2006
  • [ $CO_2$ ] and propane mixtures, which are environmentally benign, nontoxic, low in price, and compatible with materials and lubricants, were considered as promising alternative refrigerants. A fully instrumented air-conditioning system was developed for a precise performance evaluation of pure $CO_2$ and $CO_2/propane$ mixtures. In this paper, the effect of the charging amount and circulation concentration on the cooling performance of the system using $CO_2$ and propane mixtures was tested and discussed. Pure $CO_2$ and 85/15, 75/25 and 60/40 binary blends by the charged mass percentage of $CO_2/propane$ were selected as working fluids. An optimum charging amount was proposed as a parameter instead of the degree of subcooling, which can not be well defined in the transcritical cycle, to properly compare the performance between the transcritical and subcritical cycles.

Preparation of high-performance nanofiltration membrane with antioxidant properties

  • Yu, Feiyue;Zhang, Qinglei;Pei, Zhiqiang;Li, Xi;Yang, Xuexuan;Lu, Yanbin
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.191-199
    • /
    • 2022
  • In industrial production, the development of traditional polyamide nanofiltration (NF) membrane was limited due to its poor oxidation resistance, complex preparation process and high cost. In this study, a composite NF membrane with high flux, high separation performance, high oxidation resistance and simple process preparation was prepared by the method of dilute solution dip coating. And the sulfonated polysulfone was used for dip coating. The results indicated that the concentration of glycerin, the pore size of the based membrane, the composition of the coating solution, and the post-treatment process had important effects on the structure and performance of the composite NF membrane. The composite NF membrane prepared without glycerol protecting based membrane had a low flux, when the concentration of glycerin increased from 5% to 15%, the pure water flux of the composite NF membrane increased from 46.4 LMH to 108.2 LMH, and the salt rejection rate did not change much. By optimizing the coating system, the rejection rate of Na2SO4 and PEG1000 was higher than 90%, the pure water flux was higher than 40 LMH (60psi), and it can withstand 20,000 ppm.h NaClO solution cleaning. When the post treatment processes was adjusted, the salt rejection rate of NaCl solution (250 ppm) reached 45.5%, and the flux reached 62.2 LMH.

Highly Conformal Deposition of Pure Co Films by MOCVD Using Co2(CO)8 as a Precursor (Co2(CO)8 (Dicobalt Octacarbonyl) 전구체를 이용한 MOCVD Co 박막의 균일한 증착 특성 및 높은 순도에 관한 연구)

  • Lee, Jeong-Gil;Lee, Jae-Gab
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.106-110
    • /
    • 2006
  • We have investigated the effect of the experimental variables such as temperature and pressure on conformality of Co films deposited over high aspect ratio trenches using $Co_2(CO)_8$ as a precursor. The results show that the conformality of Co films is a strong function of temperature and process pressure. Lowering the pressure and temperature significantly improves the conformality. As the pressure decreases from 0.6 Torr to 0.2 Torr at $50^{\circ}C$, the bottom coverage of Co films over $0.2{\mu}m$ width trenches with an aspect ratio of 13 to 1 significantly increases to 85%. However, further increasing the temperature from 50 to $60^{\circ}C$ at the pressure of 0.2 Torr degrades the bottom coverage to 14%. In contrast, the extremely low pressure of 0.03 Torr allows the excellent conformal deposition of Co films up to $70^{\circ}C$. This can be attributed to the suppression of homogeneous reaction in the gas phase, which can create the intermediate products with high sticking coefficient. In addition, the Co films deposited at $50^{\circ}C$ show the low resistivity with negligible contamination. As a result, the newly developed Co process using MOCVD can be implemented into the next generation devices with complex shapes.

Preparation of Pure CO2 Standard Gas from Calcium Carbonate for Stable Isotope Analysis (탄산칼슘을 이용한 이산화탄소 안정동위원소 표준시료 제작에 대한 연구)

  • Park, Mi-Kyung;Park, Sunyoung;Kang, Dong-Jin;Li, Shanlan;Kim, Jae-Yeon;Jo, Chun Ok;Kim, Jooil;Kim, Kyung-Ryul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • The isotope ratios of $^{13}C/^{12}C$ and $^{18}O/^{16}O$ for a sample in a mass spectrometer are measured relative to those of a pure $CO_2$ reference gas (i.e., laboratory working standard). Thus, the calibration of a laboratory working standard gas to the international isotope scales (Pee Dee Belemnite (PDB) for ${\delta}^{13}C$ and Vienna Standard Mean Ocean Water (V-SMOW) for ${\delta}^{18}O$) is essential for comparisons between data sets obtained by other groups on other mass spectrometers. However, one often finds difficulties in getting well-calibrated standard gases, because of their production time and high price. Additional difficulty is that fractionation processes can occur inside the gas cylinder most likely due to pressure drop in long-term use. Therefore, studies on laboratory production of pure $CO_2$ isotope standard gas from stable solid calcium carbonate standard materials, have been performed. For this study, we propose a method to extract pure $CO_2$ gas without isotope fractionation from a solid calcium carbonate material. The method is similar to that suggested by Coplen et al., (1983), but is better optimized particularly to make a large amount of pure $CO_2$ gas from calcium carbonate material. The $CaCO_3$ releases $CO_2$ in reaction with 100% pure phosphoric acid at $25^{\circ}C$ in a custom designed, evacuated reaction vessel. Here we introduce optimal procedure, reaction conditions, and samples/reactants size for calcium carbonate-phosphoric acid reaction and also provide the details for extracting, purifying and collecting $CO_2$ gas out of the reaction vessel. The measurements for ${\delta}^{18}O$ and ${\delta}^{13}C$ of $CO_2$ were performed at Seoul National University using a stable isotope ratio mass spectrometer (VG Isotech, SIRA Series II) operated in dual-inlet mode. The entire analysis precisions for ${\delta}^{18}O$ and ${\delta}^{13}C$ were evaluated based on the standard deviations of multiple measurements on 15 separate samples of purified $CO_2$. The pure $CO_2$ samples were taken from 100-mg aliquots of a solid calcium carbonate (Solenhofen-ori $CaCO_3$) during 8-day experimental period. The multiple measurements yielded the $1{\sigma}$ precisions of ${\pm}0.01$‰ for ${\delta}^{13}C$ and ${\pm}0.05$‰ for ${\delta}^{18}O$, comparable to the internal instrumental precisions of SIRA. Therefore, we conclude the method proposed in this study can serve as a way to produce an accurate secondary and/or laboratory $CO_2$ standard gas. We hope this study helps resolve difficulties in placing a laboratory working standard onto the international isotope scales and does make accurate comparisons with other data sets from other groups.

The Electrical and CO Gas Sensing Properties of SnO$_2$-WO$_3$Composite Ceramics (SnO$_2$-WO$_3$복합체의 전기적특성과 일산화탄소 가스 감응특성)

  • 김태원;정승우;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.347-349
    • /
    • 1997
  • In order to investigate CO sensing property of a SnO$_2$-WO$_3$composite ceramic. we prepared pure SnO$_2$and WO$_3$added SnO$_2$compostie ceramics. Using XRD and SEM, a phase analysis and microstructure were investigated. The resistances as a function of gas atmosphere were measured by High Voltage Measure/source Unit. The measured 1000ppm CO gas sensitivity of SnO$_2$-WO$_3$composite ceramics were smaller than that of pure SnO$_2$.

  • PDF

The Effect of Trace Metallic Additives on Microstructure, Surface Appearance and Hardness of Zn Electrodeposits (아연도금층의 조직, 외관, 및 경도에 미치는 미량 금속첨가의 영향)

  • 예길촌;김대영;안덕수
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.28-39
    • /
    • 2004
  • The effect of trace metallic additives on microstructure, surface appearance and hardness of zinc electrodeposits was investigated by using sulfate bath and flow cell system. The preferred orientation of Zn deposit with Fe additive was (103)(104)+(002) mixed texture and that of Zn deposits with both Fe-Ni and Fe-Co additives was (10 1), while Zn deposits with Fe-Cr additives had (002) preferred orientation. The surface morphology of the zinc deposits was closely related to the preferred orientation of the deposits. The glossiness of Zn deposit with Fe-Ni additives was higher than that of pure Zn deposit, while the glossiness of Zn deposits with both Fe-Co and Fe-Cr additives was lower than that of pure Zn deposit. The hardness of Zn deposits with both Fe-Ni and Fe-Co additives was noticeably higher than that of Zn-Fe deposit, while that of Zn deposit with Fe-Cr additives was similar to that of Zn-Fe deposit.