• 제목/요약/키워드: Punching order

검색결과 67건 처리시간 0.022초

취성재료의 펀칭가공을 위한 충격 장치 개발 및 펀칭기구 해석 (Development of Experimental Setup for Impact Punching in Brittle Materials and Analysis of Punching Mechanism)

  • 신형섭;김진한;오상엽
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.629-636
    • /
    • 2001
  • In order to investigate the possibility of impact punching in brittle materials, an experimental setup was developed. In the setup, a long bar as a punch was used to apply the impact load to the specimen plate and measure the applied impact force during the impact punching process. Impact punching tests with various shape of punches were performed in soda-lime glass and silicon wafer under a different level of contact pressure. The damage appearance after the impact punching was examined according to the applied contact pressure. The minimum contact pressure required for a complete punching in glass specimens without development of radial cracks around the punched hole was sought at each condition. The minimum contact pressure increased with increasing the thickness of specimens and decreasing the end radius of punches. The profile of impact forces was measured during the impact punching experiment, and it could explain well the behavior of the punching process in brittle material plates. The measured impact force increased with increasing the contact pressure applied to the plates.

플라스틱 중공부품의 일체화 성형을 위한 인몰드 펀칭 공정기술에 관한 연구 (A study on the technology of in-mold punching process for integrated hole piercing of plastic hollow parts)

  • 이성희
    • Design & Manufacturing
    • /
    • 제15권4호
    • /
    • pp.1-7
    • /
    • 2021
  • A study on in-mold punching technology for hole piercing during molding of hollow plastic parts was conducted. Considering the non-linearity of the HDPE plastic material, mechanical properties were obtained according to the change in temperature and load speed. A standard specimen for the in-mold punching test was designed to implement the in-mold punching process, and the specimen was obtained through injection molding. In order to analyze the influence of process variables during in-mold punching, an in-mold punching mold capable of controlling variables such as temperature and support pressure of the specimen was designed and manufactured. Mold heating characteristics were confirmed through finite element analysis, and punching simulations for changes in process conditions were performed to analyze punching characteristics and reflected in the experiment. Through simulations and experiments, it was found that the heating temperature, punch shape, punching speed, and pressure of the back side of the specimen were very important during in-mold punching of HDPE materials, and optimal conditions were acquired within a given range.

스탬핑 순서가 미치는 미세요소 변형 수치해석 (A numerical deformation analysis of micro elements by stamping orders)

  • 이창희;김용연
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.156-162
    • /
    • 2005
  • In this paper, we study the mechanism of lead deformation by numerically simulating the stamping process by means of a commercial finite element code. It is very important to analyze effects that the lead shape makes on the lead deformation, because the lead shape is often modified in order to minimize the deformation or to increase the buckling critical load of the punch. Therefore the stamping process, first, numerically simulated by considering as a quasi-static problem. Second, the effect on the lead deformation due to the lead shape variation, a linear lead geometry and a bent lead, was numerically analyzed and discussed. Finally, the punching order was optimized fur multi-lead generating stamping process. The results show that the bent lead is little bit more shifted than the linear lead after the punching process. But the bent lead is vertically less deformed than the linear lead. The punching order to successively generate the lead is good to keep the lead space uniform. The results will be very effectively applied for the design of the blanking or punching dies in industry.

Parametric studies on punching shear behavior of RC flat slabs without shear reinforcement

  • Elsamak, Galal;Fayed, Sabry
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.355-367
    • /
    • 2020
  • This paper proposed a numerical investigation based on finite elements analysis (FEA) in order to study the punching shear behavior of reinforced concrete (RC) flat slabs using ABAQUS and SAP2000 programs. Firstly, the concrete and the steel reinforcements were modeled by hexahedral 3D solid and linear elements respectively, and the nonlinearity of the used materials was considered. In order to validate this model, experimental results considered in literature were compared with the proposed FE model. After validation, a parametric study was performed. The parameters include the slab thickness, the flexure reinforcement ratios and the axial membrane loads. Then, to reduce the time of FEA, a simplified modelling using 3D layered shell element and shear hinge concept was also induced. The effect of the footings settlement was studied using the proposed simplified nonlinear model as a case study. Results of numerical models showed that increase of the slab thickness by 185.7% enhanced the ultimate load by 439.1%, accompanied with a brittle punching failure. The punching failure occurred in one of the tested specimens when the tensile reinforcement ratio increased more than 0.65% and the punching capacity improved with increasing the horizontal flexural reinforcement; it decreased by 30% with the settlement of the outer footings.

An Experimental Study on Wave Absorber Performance of Combined Punching Plate in a Two-Dimensional Mini Wave Tank

  • Jung, Hyen-Cheol;Koo, Weoncheol
    • 한국해양공학회지
    • /
    • 제35권2호
    • /
    • pp.113-120
    • /
    • 2021
  • In order to perform a precise wave tank experiment, it is necessary to maintain the incident wave generated by the wavemaker in a steady state and to effectively remove the reflected waves. In this paper, a combined sloping-wall-type punching plate wave absorber was proposed to attenuate reflected waves effectively in a two-dimensional mini wave tank. Using the four-point reflection separation method, the reflected waves were measured to determine the reflection coefficients. Experiments were conducted under various punching plate porosities, sloping plate angles, and incident wave conditions to evaluate the performance of the combined punching plate wave absorber. The most effective wave absorbing performance was achieved when the porosity was 10% and the inclination angle of the punching plate was 18.6° under the present condition. It was also found that the installation of the sloping plate could improve the wave attenuation performance by generating the shoaling effect of the incident wave.

미세박판가공을 위한 마이크로 NCT 제작에 관한 연구 (The Development of Micro NCT for Micro Blanking/Punching of Thin Plates)

  • 홍남표;신용승;최근형;김병희;장인배;김헌영;오수익
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.1084-1087
    • /
    • 1997
  • In this paper, we developed the micro NCT system for punching the thin plates, which is driven is driven by the standalone type microprocessor. In order to adjust the alignment between the punch and die in-situ punching procedures, the non-contact type laser sensor for measuring the burr and micro-driving system for punching die with using the differential screw are developed. The height of burr in four directions in the punched hole of test specimen are measured, and the measured data are transferred to the personal computer by RS232C serial communication technology. In the personal computer, by using the graphic user interface type monitoring program and data handling procedures which includes the filtering algorithms, the direction and length of movement of the die position is decided and these data are transferred back to the microprocessor. The microprocessor drives the micro positioning stage based on these data. Even if this method is not a perfect solution for the in-situ alignment in micro punching, but this alignment methodology is accomplished in the same stage just after the punching that we hope to solve the alignment problem in the punching system based on this technology.

  • PDF

단순 트러스 모델에 의한 철근콘크리트 교량 바닥판의 펀칭전단강도 (Punching Shear Strength of RC Slabs by Simple Truss Model)

  • 이용우;황훈희
    • 대한토목학회논문집
    • /
    • 제28권2A호
    • /
    • pp.187-196
    • /
    • 2008
  • 이 연구에서는 단순 트러스 모델을 이용한 철근콘크리트 바닥판의 펀칭전단강도 평가방안을 제안하였다. 철근콘크리트 바닥판의 펀칭전단 해석의 본질적인 어려움을 극복하기 위해 집중하중이 작용하는 바닥판을 펀칭전단 파괴 형태에 기초하여 펀칭콘과 나머지 부분의 소구조체로 구분하였다. 펀칭콘의 강도는 이상화한 트러스의 경사압축부재의 강성도로써 유도되었다. 수평변위를 제어하고 있는 롤러지점의 수평방향 스프링 부재의 강성도는 펀칭콘 내에 포함된 철근에 의하여 결정되었다. 3차원 구조물의 2차원화에 따른 오차와 해석과정에 포함되지 않은 나머지 소구조체의 강성도 등에 기인하는 불확실성들을 포함하기 위하여 경사압축재의 초기각은 실험결과들에 대해 주인장 철근비를 변수로 수행된 회귀분석을 통하여 구하였다. 단순 트러스 모델로부터 구한 펀칭전단강도는 실험결과와의 비교에서 신뢰성이 높은 것으로 나타났다. 단순 트러스 모델의 스냅스로우(snap-through)좌굴해석으로부터 구한 펀칭전단강도는 철근콘크리트 바닥판의 펀칭전단강도의 검토에 유용하게 사용될 수 있을 것이다.

25\μm 홀 펀칭 공구 정렬을 위한 광학 시스템 설계 (Design of Two-way Image Acquisition System for 25\μm Tool Alignment in the Micro Hole Punching)

  • 주병윤;임성한;오수익
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.190-204
    • /
    • 2004
  • The objective of this study is to develop a highly accurate micro tool alignment system applicable to the micro machining technology. In a specific application such as micro hole punching, radial clearance between micro tools is order of a few micron. Under this micron scale tool clearance, accuracy of tool alignment is very important for ensuring hole quality. In the present study, a two-way image acquisition system was developed, which can produce overlapped image of both micro tools that face each other, and applied to the tool alignment in the micro punching. Also, to meet alignment accuracy of tools within $1\mu\textrm{m}$, the cross correlation image processing algorithm was employed. With this system, $25\mu\textrm{m}$ punching tools with $1\mu\textrm{m}$ radial clearance could be accurately aligned.

Development and evaluation of punching shear database for flat slab-column connections without shear reinforcement

  • Derogar, Shahram;Ince, Ceren;Mandal, Parthasarathi
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.203-215
    • /
    • 2018
  • A large body of experiments have been conducted to date to evaluate the punching shear strength of flat slab-column connections, but it is noted that only a few of them have been considered for the development of the ACI Code provisions. The limited test results used for the development of the code provisions fall short of predicting accurately the punching shear strength of such connections. In an effort to address this shortfall and to gain an insight into the factors that control the punching shear strength of flat slab-column connections, we report a qualified database of 650 punching shear test results in this article. All slabs examined in this database were tested under gravity loading and do not contain shear reinforcement. In order to justify including any test result for evaluation punching shear database, we have developed an approved set of criteria. Carefully established set of criteria represent the actual characteristics of structures that include minimum compressive strength, effective depths of slab, flexural and compression reinforcement ratio and column size. The key parameters that significantly affect the punching shear strength of flat slab-column connections are then examined using ACI 318-14 expression. The results reported here have paramount significance on the range of applicability of the ACI Code provision and seem to indicate that the ACI provisions do not sufficiently capture many trends identified through regression of the principal parameters, and fall on the unsafe side for the prediction of the punching shear strength of flat slab-column connections.

편칭조건이 가공용 냉연강판의 신장플랜지 성형성에 미치는 영향 (Effect of Punching Conditions on the Stretch Flange Formability of Cold rolled Steels for Deep Drawing)

  • 전영우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.161-164
    • /
    • 1999
  • In order to investigate the effect of punching condition on the stretch flange formability of sheet for deep drawing hole expansion tests at various edge condition were done. Edge conditions were changed by altering tool clearances artifical defects grinding and deburring. For a determination of optimum edge condition of side panel of automobile punched section analysis and forming results were studied and the laboratory test results were used. In case of considered side panel tool clearance should be less than 15% and punched edge should be uniform without defects for safe forming

  • PDF