• Title/Summary/Keyword: Punch through breakdown

Search Result 25, Processing Time 0.026 seconds

Performance improvement of high $\beta$ and low saturation voltage power transistor through new process (공정개선을 통한 고전류이득 저포화전압 전력 트랜지서터의 성능향상)

  • 김준식;이재곤;최시영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.8
    • /
    • pp.8-14
    • /
    • 1998
  • A new process is developed to improve the electrical characteristics of high .beta. and low saturation voltage power transistor for lamp solenoid driver application. To prevent punch-through breakdown, appropriate combination of base doping and base width is necessary in the range of operating voltage of the circuit. The optimum values of base doping and sheet resistance are $Q_{D}$= $1.5{\times}10^{14}$atoms/$\textrm{cm}^2$ and $R_{s}$= 350 $\Omega/\square$ base wodtj $W_{B}$= $2.5{\mu}m$respectively. Under this condition it is possible to control $\beta$ of the transistor to 1500, maintaining $VB_{CBO}$ =200V. To reduce scattered distribution of .beta. of the devices on the wafer, it is necessary to improve emittter predeposition process. As a result, scattered distribution of .beta. of the devices on the wafer was reduced to 1/6 by using the new process. To improve collector to emitter forward voltage drop, $V_{ECF}$ of damper diode, an additional silicon etching process is used, which resulted in improving the value of $V_{eCF}$ from 2.8 V to 1.8V. With the suggested process superior device performance and higher yield are achieved.

  • PDF

A Small Scaling Lateral Trench IGBT with Improved Electrical Characteristics for Smart Power IC (스마트 파워 IC를 위한 향상된 전기특성의 소규모 횡형 트랜치 IGBT)

  • 문승현;강이구;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.267-270
    • /
    • 2001
  • A new small scaling Lateral Trench Insulated Gate Bipolar Transistor (SSLTIGBT) was proposed to improve the characteristics of the device. The entire electrode of the LTIGBT was replaced with a trench-type electrode. The LTIGBT was designed so that the width of device was no more than 10$\mu\textrm{m}$. The latch-up current densities were improved by 4.5 and 7.6 times, respectively, compared to those of the same sifted conventional LTIGBT and the conventional LTIGBT which has the width of 17$\mu\textrm{m}$. The enhanced latch-up capability of the SSLTIGBT was obtained due to the fact that the hole current in the device reaches the cathode via the p+ cathode layer underneath the n+ cathode layer, directly. The forward blocking voltage of the SSLTIGBT was 125 V. At the same size, those of the conventional LTIGBT and the conventional LTIGBT with the width of 17$\mu\textrm{m}$ were 65 V and 105 V, respectively. Because the proposed device was constructed of trench-type electrodes, the electric field in the device were crowded to trench oxide. Thus, the punch through breakdown of LTEIGBT occurred late.

  • PDF

A Study on the Electrical Characteristics with Design Parameters in 1,200 V Trench Gate Field Stop IGBT (1,200 V급 Trench Gate Field Stop IGBT 소자의 전기적 특성 향상 방안에 관한 연구)

  • Geum, Jong-Min;Jung, Eun-Sik;Kang, Ey-Goo;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.253-260
    • /
    • 2012
  • IGBT (insulated gate bipolar transistor) have received wide attention because of their high current conduction and good switching characteristics. To reduce the power loss of IGBT, the on state voltage drop should be lowered and the switching time should be shorted. However, there is Trade-off between the breakdown voltage and the on state voltage drop. To achieving good electrical characteristics, field stop IGBT (FS IGBT) is proposed. In this paper, 1,200 V planar gate non punch-through IGBT (planar gate NPT IGBT), planar gate FS IGBT and trench gate FS IGBT is designed and optimized. The simulation results are compared with each three structures. In results, we optain optimal design parameters and confirm excellence of trench gate FS IGBT. Experimental result by using medici, shows 40% improvement of on state voltage drop.

Study on the Fabrication of EPROM and Their Characteristics (EPROM의 제작 및 그 특성에 관한 연구)

  • 김종대;강진영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.5
    • /
    • pp.67-78
    • /
    • 1984
  • EAROM device is an n-channel MOS transistor with a control gate stack ed on the floating gate. On account of channel injection type, channel lengths are designed 4-8 $\mu$m and chinnel widths 5-14 $\mu$m. These devices which have fourstructures of different type control gate are designed by NMOS 5 $\mu$m design rule and fabricated by double polysilicon gate NMOS Process. Double ion implantation is applied to increase punchthrough voltage and gate-controlled channel breakdown voltage. The drain and gate voltage for programming was 13-17V and 20-25V, respectively. EPROM cell fabricated could be erased not by optical method but by electrical method. The result of charge retention test showed decrease in stored charges by 4% after 200 hours at 1$25^{\circ}C$.

  • PDF

A Small Scaling Lateral Trench IGBT with Improved Electrical Characteristics for Smart Power IC

  • Moon, Seung Hyun;Kang, Ey Goo;Sung, Man Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.4
    • /
    • pp.15-18
    • /
    • 2001
  • A new small scaling Lateral Trench Insulated Gate Bipolar Transistor (SSLTIGBT) was proposed to improve the characteristics of the device. The entire electrode of the LTIGBT was replaced with a trench-type electrode. The LTIGBT was designed so that the width of device was no more than 10 ${\mu}{\textrm}{m}$. The latch-up current densities were improved by 4.5 and 7.6 times, respectively, compared to those of the same sized conventional LTIGBT arid the conventional LTIGBT which has the width of 17 ${\mu}{\textrm}{m}$. The enhanced latch-up capability of the SSLTIGBT was obtained due to the fact that the hole current in the device reaches the cathode via the p+ cathode layer underneath the n+ cathode layer, directly. The forward blocking voltage of the SSLTIGBT was 125 V. At the same size, those of the conventional LTIGBT and the conventional LTIGBT with the width of 17 ${\mu}{\textrm}{m}$ were 65 V and 105 V, respectively. Because the proposed device was constructed of trench-type electrodes, the electric field In the device were crowded to trench oxide. Thus, the punch through breakdown of LTEIGBT occurred late.

  • PDF