• Title/Summary/Keyword: Punch blank

Search Result 139, Processing Time 0.023 seconds

A Study on the press warm forming of stainless-aluminum clad sheet metals (스테인레스-알루미늄 클래드 강판재의 프레스 온간 성형 연구)

  • 류호연;박건규;김종호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06b
    • /
    • pp.8-18
    • /
    • 1998
  • The effect of press warm forming in cylindrical deep drawing of stainless-aluminum clad sheet metals are examined . The temperature of die and blank holder is varied from room temperature to 20$0^{\circ}C$, while the punch is kept cooled during test to increase the fracture strength of workpiece on the punch corner area. Test materials chosen for experiments are STS304-Al050-STS304, STS304-A1050-STS430-, STS304 and Al050 metals and teflon film as a lubricant is used on both sides of a workpiece. The limit drawing ration as well as quality of drawn cups (distribution of thickness and hardness)are investigated and discussed.

  • PDF

Forming Analysis of Automotive Fender Panel Considering Die Deformation (금형 변형을 고려한 자동차 펜더패널의 성형해석)

  • Song, M.S.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.387-394
    • /
    • 2006
  • In order to see the effect of die deformation on the forming analysis of sheet metals, the draw-ins, strains, and spring-backs of an automotive fender panels are numerically simulated by considering the die deformation found by the simultaneous structural analysis of press and dies. By coupling the forming analysis and the structural analysis, the die deformation is simultaneously taken into account in the forming process. Furthermore, for the consideration of load difference transferred among the upper die, punch, and blank holder due to the changes in sheet thickness, the gap elements are employed instead of the blank sheet in the structural analysis. The numerical simulation results of an automotive finder draw panel are compared with the measurements. The comparison of the forming and spring-back analysis results between the rigid die and the deformed die shows that the consideration of tool deformation can predict more accurately the forming and spring-back of sheet metals.

Application of Expert System for Non-Axisymmetric Deep Drawing Products

  • Park, Diong-Hwan;Kang, Sung-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 2001
  • An ecpert system for rotationally symmetric deep drawing products has been developed. The application for non-axisymmetric components, however, has not been reported yet. This study construsctus and expert system for non-axisymmetric motor frame which shape is classified into ellipse in deep draqing process and investigates process sequence design with elliptical shape. The developed system consists of four modules. The first is recognition of calculate surface area for non-axisymmetric products. The third is blank design module the creates an oval-shaped blank with the same surface area. The fourth is a processplanning module based on production rules that play the best important roles in an expert system for manufacturing .The production rules are generated and upgraded by interviewing field engineers. Especially, drawing coefficient, punch and die radii for elliptical shape products are considered as main design parameters. The constructed system for elliptical deep drawing product would be very useful to reduce lead time and improve accuracy for products.

  • PDF

A Study on the Drawability of Rectangular Deep Drawing of Sheet Metal using Local Heating (국부가열을 이용한 박판의 사각통 디이프 드로잉 성형에 관한 연구)

  • 박동환;김창호;강성수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.209-214
    • /
    • 1995
  • This paper describes that the effects of punch speed and temperatures of the die and the blank holder on the drawability are examined. Up to now, multi-stage of dies sets have been used generally at room temperature in deep drawing of rectangular shaped components. But using local heating, it is shown that one stage of die set was capable of deep drawing and the drawability was increased and sheet thickness of component was drawn somewhat uniformly. Rectangular deep drawing experiments on two kinds of stainless steel STS316L, STS430 of 1.0 mm thickness have been conducted using local heating. The limiting drawing height can be increased by heating the die and the blank holder up to 100 .deg. C at STS316L. Commercial lubricants hadn't an effect on drawability in rectangular deep drawing, but vinyl and teflon film had an effect on it.

  • PDF

The Effect of Tool Surface Treatment and Temperature on Deep Drawability of AZ31 Magnesium Alloy Sheet (툴 표면처리 및 온도가 AZ31 마그네슘 판재의 드로잉성에 미치는 영향)

  • Choo D. G.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.118-121
    • /
    • 2005
  • The square cup drawing of magnesium alloy AZ31 $(aluminum\;3\%,\;Zinc\;1\%)$ sheets was studied by experimental approach in various temperatures (200, 250, 300, 350, $400^{\circ}C$) when blank holding force (BHF) was controlled in real-time. And so on, the drawability was measured with the different die and punch coating. The square cup drawing test was performed by three different coated punches (CrN, TiCN, Non-coated). BHF was set about 2.0 KN, forming speed was 50 mm/min, blank thickness were 0.5, 1.0mm and the cup size was 40 mm by 60 mm after forming. The experimental data of square cup drawing test show that the tools coating and temperature were effect on the drawbility.

  • PDF

Application of Process Planning System for Non-Axisymmetric Deep Drawing Products (비축대칭 디프 드로잉 제품에 대한 공정설계 시스템의 적용)

  • 박동환;최병근;박상봉;강성수
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.591-603
    • /
    • 1999
  • A computer-aided process planning system for rotationally symmetric deep drawing products has been developed. The application for non-axisymmetric components, however, has been reported yet. Therefore, this study investigates process sequence design in deep drawing process and constructs a computer-aided process planning system for non-axisymmetric motor frame products with elliptical shape. The system developed consists of three modules. The first one os a 3-dimensional modeling module to calculate surface area for non-axisymmetric products. The second one is a blank design module that creates an oval-shaped blank with the identical surface area. The third one is a process planning module based on production rules that play the best important roles in an expert system for manufacturing. The production rules are generated and upgraded by interviewing with field engineers. Especially, drawing coefficient, punch and die radii are considered as main design parameters. The constructed system for elliptical deep drawing products would be very useful to reduce lead time and improve accuracy for production.

  • PDF

A Study on the Process Improvements of the Multi-stage Deep Drawing by the Rigid-plastic Finite Element Method (강소성 유한요소법을 이용한 다단계 디프드로잉의 공정개선에 관한 연구)

  • 전병희;민동균;김형종;김낙수
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.440-453
    • /
    • 1994
  • The multi-stage deep-drawing processes including normal-drawing, reverse-drawing, and re-drawing are analyzed by use of the rigid-plastic finite element method. Computational results on the punch/die loads and thickness distributions were compared with the experiments of the current drawing processes. Deep-drawing processes of the redesigned shell to improve the specific strength and stiffness were simulated with the numerical method developed. With varying several process parameters such as blank size, corner radii of tools, and clearances, the simulation results showed the improvements in reducing the forming loads. Also forming defects were found during simulation and appropriate blank size could be verified.

  • PDF

Effect of rubber forming process parameters on channel depth of metallic bipolar plates

  • Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.3
    • /
    • pp.221-232
    • /
    • 2017
  • In this study, bipolar plates in fuel cells are formed using rubber forming process. The effects of important parameters in rubber forming such as hardness and thickness of rubber pad, speed and pressure of punch that compress blank, and physical property of materials on the channel depth were analyzed. In the soft material sheet Al1050, deeper channels are formed than in materials STS304 and Ti-G5. Formed channel depth was increased when hardness of rubber pad was lower, thickness of rubber pad was high, and speed and pressure of punch were high. It was found the deepest channel was achieved when forming process condition was set with punch speed and pressure at 30 mm/s and 55 MPa, respectively using rubber pad having hardness Shore A 20 and thickness 60 mm. The channel depths of bipolar plates formed with Al1050, STS304 and Ti-G5 under the above process condition were 0.453, 0.307, and 0.270 mm, respectively. There were no defects such as wrinkle, distortion, and crack found from formed bipolar plates.

Process Design and Finite Element Analysis of Rectangular Cup used for Ni-MH Battery with High Aspect Ratio (니켈-수소 2차 전지용 고세장비의 직사각 컵에 대한 성형공정 설계 및 유한요소해석)

  • Ku, T.W.;Kim, H.Y.;Song, W.J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.170-181
    • /
    • 2008
  • The shape of rectangular cup used for Ni-MH(Nickel-coated Metal Hydrogen) battery for hybrid car looks quite simple, but the forming process of extruding and setting up process design are highly difficult. Furthermore, there are few concrete reports on the rectangular deep drawn cup as part of hybrid vehicles till now. In this study, process design for rectangular cup in the multi-stage deep drawing process is carried out, and FE analysis is also preformed based on the result of the process design. From the simulation result, some unexpected problems such as earing, wrinkling and excessive thickness changes of the intermediate blank occurred. To overcome these failures, a series of modification for punch shape in the forming process design are completed and applied. Considering the modified punch shape in the multi-stage deep drawing process, additional FE analysis is also carried out and the simulation result is verified in view of the deformed shape, thickness change and effective strain distribution. The result of FE analysis with the improved process design confirmed not only reducing thinning of wall and possibilities of failure but also improving the quality of drawing product through the modification of punch shape.

An Automated Process Planning System of Lead Frame for Progressive Working (반도체 리드프레임의 프로그레시브 가공을 위한 공정설계 자동화 시스템)

  • Kim, Jae-Hun;Yun, Ji-Hun;Kim, Cheol;Kim, Byeong-Min;Choe, Jae-Chan
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.554-561
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design of lead frame semicon-ductor with piercing operation which is very precise for progressive working. An approach to the sys-tem is based on to knowledge-based rules. Knowledge for the system is formulated from plasticity theories experimental results and the empirical knowledge of field experts. This system has been writ-ten using AutoLISP to AutoCAD on a personal computer and is composed of three main modules which are input and shape treatment production feasibility check and strip-layout module. Based on the knowledge-based rules the system is designed by considering several factors such as material and thickness of product complexities of blank geometry and punch profile, and availability of press. Also strip-layout drawing generated by piercing operation according to punch profiles considered V-notch dimple. pad chamfer spank cavity punch camber and cross bow of lead frame is displayed in graphic forms. This system can be used by a novice who may not have any knowledge of tool design and will invrease efficiencies to the designer in this field.

  • PDF