• Title/Summary/Keyword: Pumping Laser diode

Search Result 30, Processing Time 0.031 seconds

Pulsed-laser-diode Intermittently Pumped 2-㎛ Acousto-optic Q-switched Tm:LuAG Laser

  • Wen, Ya;Jiang, Yan;Zheng, Hao;Zhang, Hongliang;Wang, Chao;Wu, Chunting;Jin, Guangyong
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.238-246
    • /
    • 2020
  • The heat distribution in crystals in a 2-㎛ acousto-optic Q-switched Tm:LuAG laser pumped by pulsed-laser-diode (pulsed-LD) intermittent-pumping technology was analyzed using COMSOL software. The thermal lensing effect of the Tm:LuAG crystal can be mitigated by pulsed-LD intermittent-pumping techniques. An experimental setup using this kind of approach achieved maximum output energy of 8.31 mJ, minimum pulse width of 101.9 ns, and highest peak power of 81.55 kW, reached at a Q-switched repetition rate of 200 Hz. It offers significant improvement of performance of the output laser beam, compared to pulsed-LD double-ended pumping technology at the same repetition rate.

Thermal effect at Nd:YAG using a laser-diode side-pumping (반도체 레이저 측면 여기 Nd:YAG 매질에서의 열영향)

  • 양동옥;김병태
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.44-50
    • /
    • 2003
  • This paper describes the thermal effect at Nd:YAG using a laser-diode side-pumping. To detect the depolarization loss and the retardation caused by the thermal effect, a λ/4 plate is inserted between the polarizer and the Nd:YAG laser material. Using a CCD has allowed detection of the variation of the beam pattern that could analyze the change of the refractive index of the Nd:YAG laser material by the thermal effect. Through the change of the probe beam power, we know that 21% of the pumping power was converted into heat in the material. The depolarization loss was 24.7% under a temperature of $25^{\circ}C$ of the laser material and a pumping power of 15 W. The inhomogeneous distribution showed that the retardation angle was 7$^{\circ}$ in the center of the material and 19$^{\circ}$ on the edge of it. It is confirmed that the thermal effect is analyzed at the each point of the laser material and it suggests an effective method to reduce the thermal effect on the LD side-pumped laser material.

Bypass Heat Sink Analysis for a Laser Diode Bar with a Top Canopy

  • Ji, Byeong-Gwan;Lee, Seung-Gol;Park, Se-Geun;O, Beom-Hoan
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.113-117
    • /
    • 2017
  • With the increasing use of high-power laser diode bars (LDBs) and stacked LDBs, the issue of thermal control has become critical, as temperature is related to device efficiency and lifetime, as well as to beam quality. To improve the thermal resistance of an LDB set, we propose and analyze a bypass heat sink with a top canopy structure for an LDB set, instead of adopting a thick submount. The thermal bypassing in the top-canopy structure is efficient, as it avoids the cross-sectional thermal saturation that may exist in a thick submount. The efficient thickness range of the submount in a typical LDB set is guided by the thermal resistance as a function of thickness, and the simulated bypassing efficiency of a canopy is higher than a simple analytical prediction, especially for thinner canopies.

Optimization of a Passively Q-switched Yb:YAG Laser Ignitor Pumped by a Laser Diode with Low Power and Long Pulse Width

  • Kim, Jisoo;Moon, Soomin;Park, Youngin;Kim, Hyun Su
    • Current Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.127-133
    • /
    • 2020
  • We successfully constructed a passively Q-switched Yb:YAG laser ignitor pumped by a diode laser with low power and long pulse width. To the best of our knowledge, this is the first study to achieve a quasi-MW output power from an optimized Q-switch Yb:YAG laser ignitor by using a pumping diode laser module emitting at under a power of 23 W. The output pulse energy of our optimized laser is 0.98 mJ enclosed in a 1.06 ns pulse width, corresponding to a peak power of 0.92 MW.

The Output Characteristics of a Fiber-Coupled Laser-Diode Pumped Ceramic Nd:YAC Laser Due to Thermal Lensing Effect (광섬유 연결 반도체레이저 여기 세라믹 Nd:YAG 레이저에서 열렌즈 효과에 의한 출력특성)

  • Ok, Chang-Min;Kim, Byung-Tai;Kim, Duck-Lae
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.455-460
    • /
    • 2006
  • The output characteristics of a ceramic Nd:YAC laser pumped by a fiber-coupled laser diode was investigated. An efficiency and a slope efficiency of 33.8 % and 39.3 % respectively were obtained, under an output coupler reflectance of 90.4 %. The laser power has decreased suddenly due to the thermal tensing effect more than 6 W pumping powers.

Fabrication of a AlGaAs high power (~20W) laser diode array (20W급 AlGaAs 레이저 다이오드 어레이의 제작)

  • 박병훈;손낙진;배정훈;권오대
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.11
    • /
    • pp.20-24
    • /
    • 1997
  • We have successfully fabricated high power (~20W) laser diode array, which are useful for pumping Nd:YAG lasers. The laser diode aray has 20 100.mu.m-wide cahnnels of which space was adjusted to 350.mu.m to improve thermal characteristics. And channel width is 100.mu.m. For an uncoated LD array, the output power of 15.66W has been obtained at 41A under quasi-CW operation, which results in about 0.42W/A slope efficiency. After aR(5%) and HR (95%) coatings on both facets, the output power was improved up to 21.18W at 40A under the same operation as above and the slope efficiency was 0.795W/A. On the other hand, by using a near field measurement system consisting of objective lens, eyepiece, CCD camera and image processing board, the typical near field patten of 1*20 LD array was observed.

  • PDF

High Repetition Wavelength-locked 878.6 nm LD Dual-end-pumped Nd:YVO4 1064 nm Laser

  • Li, Yue;Yu, Yong-Ji;Wang, Yu-Heng;Liu, Hang;Liu, He-Yan;Jin, Guang-Yong
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.582-588
    • /
    • 2018
  • A $Nd:YVO_4$ laser dual-end-pumped by a wavelength-locked 878.6 nm laser diode is presented. At the repetition rate of 500 KHz, the absorbed pump power of 58 W, an output power of 26.1 W at 1064 nm is obtained, corresponding to an optical-optical efficiency of 45%. The pulse width is 44.2 ns. Meanwhile, the effects of traditional 808 nm pumping and 878.6 nm dual-end-pumping on the output laser beam quality and pulse width are compared and analyzed in an experiment.

Development of Minimally Invasive Mid-infrared Lipolysis Laser System for Effective Fat Reduction

  • Lee, Ji-Young;Ryu, Han Young;Seo, Young-Seok
    • Medical Lasers
    • /
    • v.10 no.2
    • /
    • pp.82-89
    • /
    • 2021
  • Background and Objectives Due to changes in diet and lifestyle, the number of obese people worldwide is steadily increasing. Obesity has an adverse effect on a healthy life, so it needs treatment and improvement. Research related to this is continuously being conducted. Materials and Methods The laser system to compact designed using 808 nm laser diode and Neodymium Yttrium orthovanadate generates a 1064 nm wavelength, the periodically polarized nonlinear crystal pumping laser beam. The pulsed 1064 nm wavelength beam passing through the AO Q-switch is used as the pumping light of the nonlinear optical crystal and is irradiated to the periodic polarized nonlinear optical crystal with a quasi-phase matching period. Nonlinear optical crystals use an oven to control the temperature to generate the desired 1980 nm and 2300 nm wavelengths. Results The 1980 nm and 2300 nm wavelengths generated by temperature control of nonlinear optical crystals are effective for lipolysis. A fiber catheter was used so that the laser could be directly irradiated to the fat cells. In particular, the new wavelength (1980 nm, 2300 nm) can increase the fat reduction effect with low energy (1.3 W). When a laser with a combination wavelength of 1980 nm and 2300 nm was used, an average lipolysis effect of 20% was obtained. Conclusion A mid-infrared lipolysis laser system with excellent absorption of fat and water has been developed. We conducted a princlinical study to confirm the efficacy and safety of the lipolysis laser system, and obtained good results for lipolysis with low energy.

Stimulated Emission with 349-nm Wavelength in GaN/AlGaN MQWs by Optical Pumping

  • Kim, Sung-Bock;Bae, Sung-Bum;Ko, Young-Ho;Kim, Dong Churl;Nam, Eun-Soo
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.79-85
    • /
    • 2017
  • The crack-free AlGaN template has been successfully grown by using selective area growth with triangular GaN facet. The triangular GaN stripe structure was obtained by vertical growth rate enhanced mode with low growth temperature of $950^{\circ}C$ and high growth pressure of 500 torr. The lateral growth rate enhanced mode of AlGaN for crack-free and flat surface was also investigated. Low pressure of 30 torr and high V/III ratio of 4400 were favorable for lateral growth of AlGaN. It was confirmed that the $4{\mu}m$ -thick $Al_{0.2}Ga_{0.8}N$ was crack-free over entire 2-inch wafer. The dislocation density of $Al_{0.2}Ga_{0.8}N$ was as low as ${\sim}7.6{\times}10^8/cm^2$ measured by cathodoluminescence. Based on the high quality AlGaN with low dislocation density, the ultraviolet laser diode epitaxy with cladding, waveguide and GaN/AlGaN multiple quantum well (MQW) was grown by metalorganic chemical vapor deposition. The stimulated emission at 349 nm with full width at half maximum of 1.8 nm from the MQW was observed through optical pumping experiment with 193 nm KrF laser. We also have fabricated the deep ridge type ultraviolet laser diode (UV-LD) with $5{\mu}m-wide$ and $700{\mu}m-long$ cavity for electrical properties. The turn on voltage was below 5 V and the resistance was ${\sim}55{\Omega}$ at applied voltage of 10 V. The amplified spontaneous emission spectrum of UV-LD was also observed from pulsed current injection.