• Title/Summary/Keyword: Pump inducer

Search Result 59, Processing Time 0.028 seconds

Turbopump Performance Prediction by Using CFD Analysis

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Dae-Jin;Hong, Soon-Sam;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.403-406
    • /
    • 2008
  • The performance of an entire pump system composed of an inducer, an impeller, a volute and seals has been computationally analyzed. A commercial three dimensional Reynolds Averaged Navier-Stokes method is used in this study. The axial thrust is predicted from the pump calculation in its entirety, which is necessary for such estimation. Moreover, the effects of each component on the pump performance are investigated at a design condition through the analysis of flow structures. The predicted performance is in good agreement with experimental data in terms of head rise, efficiency and volute wall pressure distributions despite of highly complex flow structures being present. The computational results also show that the axial and radial thrusts are within the design limit although corresponding experimental measurements were not taken.

  • PDF

Shape Optimization for Enhancing the Performance of an Inducer for the Main Hydraulic Pump in a Rotary Wing Aircraft (회전익 항공기 주유압펌프용 인듀서 성능 향상을 위한 형상최적설계)

  • Kim, Hyogyeum;Heo, Hyeungseok;Park, Youngil;Lee, Changdon
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.37-44
    • /
    • 2017
  • In this study, in order to prevent cavitation in a variable swash-plate type hydraulic pump, a basic model impeller has been applied to a new pump, and the impeller shape has been optimized through flow analysis. Based on the analysis results, we could propose an impeller shape with high efficiency and low possibility of cavitation in comparison with the basic model. The simplification of the basic shape of the impeller of the hydraulic pump was performed in three parts in the order of hub shape, wing, and curvature, and eight design parameters were defined to satisfy the design requirement. Compared with the initial model of the impeller, when the differential pressure of the optimum model increased, the efficiency was improved. It achieved the goal of design improvement because cavitation did not occur under the rated operating conditions.

Numerical Studies on the Inducer/Impeller Interaction Liquid Rocket Engine Turbopump (액체로켓용 터보펌프 인듀서/임펠러 상호작용에 대한 연구)

  • Choi, Chang-Ho;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.50-57
    • /
    • 2003
  • The hydraulic performance analysis of a turbopump with an inducer for a liquid rocket engine was performed using three-dimensional Navier-Stokes equations. A simple mixing-plane method and a full interaction method were used to simulate inducer/impeller interaction. Two methods show almost similar results due to the weak interaction between the inducer and impeller since the inducer outlet blade angle is lather small. But, when the inducer and the impeller are closely spaced near the shroud region, flow angles at the impeller inlet show different results between two methods. Thus, the full interaction method predicts about $2\%$ higher pump performance than the mixing-plane method. And the effects of prewhirl at the impeller inlet are also investigated. As the inlet flow angle is increased, the head rise and the efficiency are decreased. The computational results are compared with measured ones. The computational results at the design point show good agreements with experimental data, however under-predicts the head rise at high mass flow rates compared to the experiment.

Effects of floating-ring seal clearance on the performance of the pump (플로팅링 실 간극이 터보펌프용 펌프의 성능에 미치는 영향)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Dae-Jin;Hong, Soon-Sam;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.38-43
    • /
    • 2007
  • Pumps for a turbopump generally operate under high rotational speeds and large head rise conditions. Therefore, reliability is a prime design requirement. Floating-ring type seals are frequently employed in a turbopump because of robustness despite of low hydraulic efficiency. There are many researches on the floating-ring seal itself, but the effects of the floating ring seals on the performance of the whole pump are not widely studied in spite of their importance. In the present study, experimental and computational studies on the effects of the radial clearance of the floating ring seals on the performance of a pump were performed. The experimental results showed that the head rise and efficiency increased as the floating-ring seal clearance was decreased. The results also showed the possibility that the leakage flow which was injected to the inlet of the inducer could enhance the suction performance of the inducer by diminishing the size of the backflows.

NUMERICAL STUDY ON THE TURBOPUMP INDUCER (터보펌프 인듀서에 대한 수치해석적 연구)

  • Noh J.G.;Choi C.H.;Hong S.S.;Kim J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.16-20
    • /
    • 2006
  • The present study focuses on the flow analysis of a turbo pump inducer by performing both numerical and experimental methods. The head rise, efficiency and detailed flow fields such as outlet flow angles, pressure and velocity vectors are measured and compared with the computational data. Generally a good agreement is obtained between numerical and experimental results. However, some discrepancies are observed due to complex flow structures inside the inducer. Future calculations with an advanced turbulence model and a dense computational grid needs to be performed to obtain accurate numerical solution for the detailed flow fields.

Numerical Simulation Model for Cryogenic Pump Cavitation

  • Tani, Naoki;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.234-239
    • /
    • 2004
  • In the development of rocket turbo-pump, cavitation at the inducer is one of the major problems. Cryogenic fluids are commonly used for rocket propellant, therefore, thermodynamic effect becomes noticeable compared to conventional water cavitation. In the present study, a numerical simulation method for cryogenic cavitation is proposed, which reveals the difference between cryogenic and water cavitation.

  • PDF

CFD and surrogates-based inducer optimization

  • Kratky, Tomas;Zavadil, Lukas;Doubrava, Vit
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.213-221
    • /
    • 2016
  • Due to the nature of cavitation numerical analyses, computational optimization of a pump with respect to the cavitation properties is extremely demanding. In this paper it is shown how a combination of Transient Blade Row (TBR) method and some simplifications can be used for making the optimization process more efficient and thus possible on current generation of hardware. The aim of the paper is not the theory of hydraulic design. Instead, the practical aspects of numerical optimization are shown. This is done on an example of a radial pump and a combination of ANSYS CFX, ANSYS software tools and custom scripts is used. First, a comparison of TBR and fully-transient simulation is made. Based on the results, the TBR method is chosen and a parametric model assembled. Design of Experiment (DOE) table is computed and the results are used for sensitivity analysis. As the last step, the final design is created and computed as fully-transient. In conclusion, the results are discussed.

A Study on the Analysis of Cavitation in Intake Pump (취수펌프에서의 캐비테이션 분석에 관한 연구)

  • Kim, Yong-Yeol;Cha, In-Ho;Lee, Je-Geun;Kwon, Gi-Bum;Lee, Jong-Ik;Kim, Han-Il
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.144-147
    • /
    • 2008
  • Intake pump for waterworks is badly damaged by a small amount of cavitation because of variable water quality and severe operation conditions. In general, the required NPSH for reduced cavitation can be provided by inlet condition, supply air, change pump and inducer. But once the pump has been built and installed there is little that can be done to reduce cavitation damage. In this study, we analysed the cavitation of paldang intake pump and intended to avoid the same phenomena.

  • PDF

Rotordynamic Design of a LOX Pump for a 75 Ton Class Liquid Rocket Engine (75톤급 액체로켓 엔진용 산화제 펌프 회전체 동역학 설계)

  • Jeon, Seong-Min;Kwak, Hyun-D.;Yoon, Suk-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.205-210
    • /
    • 2007
  • A LOX pump rotordynamic design was performed for a 75 ton thrust liquid rocket engine. Axial positions of an inducer, an impeller and bearings on a shaft are decided on the basis of the experience achieved by previously developed turbopump which has the similar layout. The result of pump hydraulic design was reflected in the present study to decide axial length of the inducer and impeller. A distance from the rear bearing to the impeller was considered as a design parameter for load distribution of the bearings. Asynchronous eigenvalue analysis was performed as a function of rotating speeds and bearing stiffness to investigate critical speed of the LOX pump. From the numerical analysis, it is found that the LOX pump with the proper bearing loads safely operates as a sub-critical rotor of which critical speed is high enough compared to the operating speed 11,000 rpm.

  • PDF

High Frequency Signal Analysis of LOx Pump for Liquid Rocket Engine under Cavitating Condition (캐비테이션 환경에서의 액체로켓엔진용 산화제펌프의 고주파 신호 분석)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho;Bae, Joon-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.61-67
    • /
    • 2018
  • High-frequency signals are analyzed at the inlet/outlet pipeline and pump casing during cavitation tests of the LOx pump for liquid rocket engines. Root-mean square values of all data are investigated with respect to cavitation number. The values of synchronous, harmonic, and cavitation instability frequencies are also calculated. Pressure pulsations of the inlet and outlet pipelines are affected by cavitation instabilities. The 3x component (i.e., the blade-passing frequency of the inducer) is predominant in the outlet pulsation sensor. This seems to be related to the fact that the number of impeller blades is a multiple of the number of the inducer blades. The cavitation instability is also measured at the accelerometer of the pump casing.