• 제목/요약/키워드: Pump impeller

검색결과 340건 처리시간 0.025초

원심펌프 회전차의 성능해석에 대한 전산해석적 연구 (Computational Study on the Performance of the Impeller Centrifugal Pump)

  • 김원갑;강신형
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.125-133
    • /
    • 1999
  • This paper reports the impeller performance of centrifugal pump, modified HES65-250. Developed CFD code uses SIMPLE algorithm, power-law scheme, standard k-$\epsilon$ turbulence model in curvilinear coordinate system. The calculations are conducted for 5 cases, from 0.6 to 1.4 of flow rate ratio with 0.2 increment. The flow characteristics inside of impeller are analysed. The results show that reversal flows exist at the inlet of impeller which have small rotary stagnation pressure. The obtained results are compared with the experimental data at impeller exit and shows good qualitative agreement.

  • PDF

자동차 밀폐형 워터펌프의 토출구 형상이 수력성능에 미치는 영향 (Effect of Shape of Discharge Port on Hydraulic Performance of Automotive Closed Type Water Pump)

  • 허형석;이기수;배석정
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.39-47
    • /
    • 2006
  • Recent trend in pursuit of high performance and effectiveness for automotive cooling system has changed the application of material for impeller of automotive water pump from metal to high ability engineering resin, which can achieve optimization of design of impeller geometry and realize lightweight high efficiency water pump. Closed type water pump improves hydraulic loss of fluid through the clearance between volute casing and impeller compared with that of the existing open type water pump(Although closed type is heavier than open type for the same size and same material, adoption of plastics can solve the problem.). In the present study, the characteristics of hydraulic performance of closed type water pump were investigated with respect to the angle between shroud and hub of impeller and the shape of discharge port of volute casing. Performance tests were carried out for 4 cases, that is, for 2 impellers and 2 casings. The modification of shape of only discharge port can enhance the hydraulic performance by 10 percent and the pump efficiency by 4-6 percent.

논클로그 및 스크류식 원심펌프의 임펠러 형상이 펌프성능에 미치는 영향 (Effects of the Impeller Shapes on the Non-Clogging and the Screw-type Centrifugal Pump Performances)

  • 김동주;서상호;성순경
    • 한국유체기계학회 논문집
    • /
    • 제1권1호
    • /
    • pp.81-89
    • /
    • 1998
  • In this study, the effects of the impeller shapes on the pump performances of the non-clogging and the screw-type centrifugal pumps are experimentally studied. The characteristics of total head, efficiency and power of the non-clogging pump increase as the number of vanes increases. The screw-type centrifugal pump with the linear-shape vane shows a little better performance than that of the screw-type centrifugal pump with the curved-shape vane. The differences in the characteristics of total head, efficiency and power are, however, insignificant. Therefore, it is advisable that, considering the convenience of pump manufacturing, the screw-type centrifugal pump with the linear-shape vane should be used. This study also compares the pump characteristics of the non-clogging pump and screw-type centrifugal pump. The characteristics of total head and efficiency of the non-clogging pump are better than those of the screw-type centrifugal pump. The screw-type centrifugal pump requires more shaft power than the non-clogging pump.

  • PDF

심장내 이식형 축류 혈액펌프의 in-vitro특성에 관한 연구 (A Study of in-vitro Performances of the Intracardiac Axial Flow Pump)

  • 김동욱;삼전부호희
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권1호
    • /
    • pp.33-38
    • /
    • 1998
  • 심장내 이식형 축류 혈액 펌프의 개발을 시도하였다. 이 펌프는 해부학적인 적합성이 좋고, 혈액과 접촉하는 면적이 적으며, 심장판막의 위치에 이식할 수 있어 이식술이 용이한 등의 이점이 있다. 축류혈액펌프는 입펠러와 소형 모터에 의해 구성되었으며, 모터축과 펌프의 본체의 밀봉은 자성유체 축봉이 이용되었다. 본 연구에서 개발한 혈액펌프의 펌프 특성은 4매 임펠러의 경우 회전수 7091[rmp], 6매 임펠러의 경우 회전수 6402[rpm]에서 유량 5[l/min], 차압 100[mmHm]을 얻을 수 있었으며, 자성유체 축봉의 내압 특성은 회전수 7000[rpm], 압력ㄹ 150[mmHg]에서 24시간 이상의 내구성을 얻을 수 있었다. 그리고, 용혈에 대하여 검토한 결과 4매 임펠러의 1H 는 0.0561[g/100L]이고, 6매 임펠러의 경우는 1H=0.214[g/100L]을 얻을 수 있었다. 이상의 실험결과는 심장내 이식 축류형 혈액펌프의 실현 가능성을 보여 주는 것으로 앞으로 큰 기대를 걸수 있다고 생각된다.

  • PDF

Effect of The Impeller Discharge Angle on the Performance of a Spurt Vacuum Pump

  • Lee, Ji-Gu;Kim, Youn-Jea
    • Applied Science and Convergence Technology
    • /
    • 제26권1호
    • /
    • pp.1-5
    • /
    • 2017
  • The spurt vacuum pump is widely used to transfer sludge and slurry, and to control flow rate in a variety of processing fields, such as the oil, chemical, and fiber industries. The efficiency of the pump depends on the design parameters of the impeller, such as the number of blades, and the blade angle. In this study, the effect of the configuration of the impeller discharge angle of a spurt vacuum pump, which influences total head, shaft power, and efficiency, was numerically investigated using the commercial code, ANSYS CFX ver. 16.1. In addition, the performance of the pump was evaluated on the basis of the correlations between the total head, pump efficiency, and pressure distribution.

회전익 항공기 주유압펌프용 인듀서 성능 향상을 위한 형상최적설계 (Shape Optimization for Enhancing the Performance of an Inducer for the Main Hydraulic Pump in a Rotary Wing Aircraft)

  • 김효겸;허형석;박영일;이창돈
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.37-44
    • /
    • 2017
  • In this study, in order to prevent cavitation in a variable swash-plate type hydraulic pump, a basic model impeller has been applied to a new pump, and the impeller shape has been optimized through flow analysis. Based on the analysis results, we could propose an impeller shape with high efficiency and low possibility of cavitation in comparison with the basic model. The simplification of the basic shape of the impeller of the hydraulic pump was performed in three parts in the order of hub shape, wing, and curvature, and eight design parameters were defined to satisfy the design requirement. Compared with the initial model of the impeller, when the differential pressure of the optimum model increased, the efficiency was improved. It achieved the goal of design improvement because cavitation did not occur under the rated operating conditions.

Design Optimization of Mixed-flow Pump in a Fixed Meridional Shape

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.14-24
    • /
    • 2011
  • In this paper, design optimization for mixed-flow pump impellers and diffusers has been studied using a commercial computational fluid dynamics (CFD) code and DOE (design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser. Geometric design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffusers. The vane plane development was controlled using the blade-angle in a fixed meridional shape. First, the design optimization of the defined impeller geometric variables was achieved, and then the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Next, design optimizations of the defined diffuser shape variables were performed. The importance of the geometric design variables was analyzed using $2^k$ factorial designs, and the design optimization of the geometric variables was determined using the response surface method (RSM). The objective functions were defined as the total head and the total efficiency at the design flow rate. Based on the comparison of CFD results between the optimized pump and base design models, the reason for the performance improvement was discussed.

Multi-condition optimization and experimental verification of impeller for a marine centrifugal pump

  • Wang, Kai;Luo, Guangzhao;Li, Yu;Xia, Ruichao;Liu, Houlin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.71-84
    • /
    • 2020
  • In order to improve the performance of marine centrifugal pump, a centrifugal pump whose specific speed is 66.7 was selected for the research. Outlet diameter D2, outlet width b2, blade outlet angle β2, blade wrap φ and blade number z of the impeller were chosen as the variables. The maximum weighted average efficiency and the minimum vibration intensity at the base were calculated as objectives. Based on the Latin Hypercube method, the impeller was numerically optimized. The numerical results show that after optimization, the amplitudes of pressure fluctuation on the main frequency at different monitoring points decrease in varying degrees. The radial force on impeller decreases obviously under off-design flow rates and is more symmetrical during the operation of the pump. The variation of the axial force is relatively small, which has no obvious relationship with the rotating angle of the impeller. The energy performance and vibration experiment was performed for verifying. The test results show that the weighted average efficiency under 0.8Qd, 1.0Qd and 1.2Qd increases by 4.3% after optimization. The maximal vibration intensity at M1-M4 on the pump base reduced from 0.36 mm/s to 0.25 mm/s, decreasing by 30.5%. In addition, the vibration velocities of bracket in pump side and outlet flange also have significant reductions.

양흡입 원심펌프에 있어서 유량변화의 영향에 관한 수치해석적 연구 (Numerical Analysis on the Effect of Flow Rate Variation in Double-Suction Centrifugal Pump)

  • 안영준;신병록
    • 한국유체기계학회 논문집
    • /
    • 제13권6호
    • /
    • pp.51-56
    • /
    • 2010
  • A numerical simulation is carried out to investigate the effect of flow rate variation and performance characteristics of double-suction centrifugal pump. Two types of pump which have different impeller inlet breadth and curvature of the shroud line consist of six blades impeller and shroud ring. Finite-volume method with structured mesh and $k-\omega$ Shear Stress Transport turbulence model was used to guaranty more accurate prediction of turbulent flow in the pump impeller. Total head, power and overall efficiency were calculated to obtain performance characteristics of two types of pump according to the variation of flow rate. From the results, impeller having smooth curve along the shroud line obtained good performance. The lower flow rate, the more circulation region, flow unsteadiness and complicate flow pattern are observed. Complicated internal flow phenomena through impellers such as flow separation, pressure loss, flow unsteadiness and performance are investigated and discussed.

Unsteady Analysis of Impeller-Volute Interaction in Centrifugal Pump

  • Cheah, Kean Wee;Lee, Thong See;Winoto, Sonny H.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권3호
    • /
    • pp.349-359
    • /
    • 2011
  • An unsteady numerical analysis has been carried out to study the strong impeller volute interaction of a centrifugal pump with six backward swept blades shrouded impeller. The numerical analysis is done by solving the three-dimensional Reynolds Averaged Navier-Stokes codes with standard k-${\varepsilon}$ two-equations turbulence model and wall regions are modeled with a scalable log-law wall function. The flow within the impeller passage is very smooth and following the curvature of the blade in stream-wise direction. However, the analysis shows that there is a recirculation zone near the leading edge even at design point. When the flow is discharged into volute casing circumferentially from the impeller outlet, the high velocity flow is severely distorted and formed a spiraling vortex flow within the volute casing. A spatial and temporal wake flow core development is captured dynamically and shows how the wake core diffuses. Near volute tongue region, the impeller/volute tongue strong interaction is observed based on the periodically fluctuating pressure at outlet. The results of existing analysis also proved that the pressure fluctuation periodically is due to the position of impeller blade relative to tongue.