• Title/Summary/Keyword: Pump Module

Search Result 94, Processing Time 0.02 seconds

The Dynamic Characteristic Test of Oil pump Integrated Balance Shaft Module (오일펌프 내장형 밸런스 샤프트 모듈의 동특성 시험)

  • Seong, Eun-Je;Kang, Dae-Gyu;Jeong, Chan-Yong;Han, Chang-Soo;Kim, Myung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.403-408
    • /
    • 2007
  • According as diesel automobile are produced, reduce noise and vibration that is occurred by characteristic of diesel engine, and need engine room layout optimization and research for light weight of parts. Balance Shaft Module is module parts for vehicles engine to improve performance and efficiency of engine and reduce noise and vibration. These days, an oil pump integrated balance shaft module and an oil sump integrated balance shaft module is on the rising for optimizing of engine room. In this study, produced prototype of oil pump integrated type balance shaft module, and achieved dynamic characteristic test about experimental modal analysis and noise/vibration of balance shaft module.

  • PDF

Development of Constant Delivery Micro Pump in a Variable Pressure Environment for Intrathecal Drug Administration System (레져버에 압력이 가해지는 환경에서의 미소 정량 토출 펌프의 개발)

  • Lee, Tae Gyeong;Lee, Cheol Su;Jung, Yu Seok;Park, Gyeong Geun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.387-394
    • /
    • 2017
  • This paper develops a pump system for patient with chronic pain or cancer. The pump module is consists of two micro-valve and membrane. The micro-valve is operated by a solenoid. With two solenoid valves which are connected via a drug transport line, the inlet and outlet are completely blocked. A silicon rubber membrane located between the two valves makes the flow-rate constant without any backflow. This pump module can control the flow-rate of drugs by controlling the time that the valves are opened and closed. The reservoir consists of a drug chamber and a gas chamber. As the gas chamber encloses the drug chamber, propellant gas which is injected into the gas chamber pressurizes the drug chamber regardless of volume of the drug chamber. To design the pump module, analysis a constant efficiency test, and accuracy test for the pump module were conducted.

Development of an Implantable Drug Infusion Pump for Pain Control in Cancer Patients (암 환자 통증 조절을 위한 이식형 약물 주입 펌프 개발)

  • Bach, Du-Jin;Park, Jun-Woo;Hong, So-Young;Lee, Chul-Han;Kim, Kwang-Gi;Jo, Yung-Ho;Kim, Dae-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.31-37
    • /
    • 2009
  • This paper presents a implantable intrathecal drug infusion pump for pain control in cancer patients. This device consists of micropump module, drug reservoir module and control module. The micropump module using cam-follower mechanism composed of small-sized four cams and four followers. Each followers is driven by a cam and liquid is discharged by a sequential reciprocal motion of the followers. The advantage of this structure is that it allows the pump to be clean and valveless. The drug reservoir module composed of drug chamber, gas chamber and diaphragm. The control module composed of battery, wireless communication unit and controller. To design a small-sized, low power pump some analysis were performed to determine the design parameters. To verify the feasibility of the experiment, a prototype was manufactured and its operating characteristics were investigated. Experimental results were in accordance with the expected results obtained from analysis.

Design of an One-Chip Controller for an Electronic Dispenser (전자 디스펜서용 단일칩 제어기 설계)

  • Won, Young-Uk;Kim, Jeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.137-140
    • /
    • 2005
  • The electronic dispenser is composed of electronic part and mechanical part. Electronic part is consisted of input keypad, micro-controller, display module, and pump module. In this paper we designed micro-controller for electronic part. The micro-controller controls display module and pump module. The display module is composed by LCD device, and the pump module is composed by motor device. The micro-controller for an electronic dispenser is designed by VHDL. We used WX12864APl for the LCD device and SPS20 for the stepping motor. Also, the micro-controller is designed by Altera Quartus tool and verified with Agent 2000 Design-kit using APEX20K Device. In this paper, we present possibility to adopt of biotechnology field through designing of one-chip controller for an electronic dispenser.

  • PDF

Development of an Automatic Pump Design System Using AutoCAD (AutoCAD 프로그램을 이용한 자동 펌프설계 시스템 개발)

  • 김일수;정영재;이창우;박주석
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.91-96
    • /
    • 2002
  • Recently industry has moved towards automated operations with the goal of achieving better product quality greater productivity and reliability The pump design in characterized by extensive utilization of the related database which contains performance data. The inputs to the system are through interactive dialogue sessions and the basic input consist of flow rate, head, of fluid efficiency and the customer special requirements. These basic inputs along with the numerous rules in the knowledge bases and the mathematical modeling enable the effective design of the pump industry This paper represents the development of an automatic pump design system that was composed of a main program the data input module the drawing module the drawing edit module and was programed by the AutoLISP language under the Auto CAD program The developed system ultimately generates the design for a pump through the AutoCAD language.

Design of Charge Pump Circuit for Floating Gate Power Supply of Intelligent Power Module (Intelligent Power Module의 플로팅 게이트 전원 공급을 위한 전하 펌프 회로의 설계)

  • Lim, Jeong-Gyu;Chung, Se-Kyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.135-144
    • /
    • 2008
  • A bootstrap circuit is widely used for the floating gate power supply of Intelligent power module (IPM). A bootstrap circuit is simple and inexpensive. However, the duty cycle and on-time are limited by the requirement to refresh the charge in the bootstrap capacitor. And the value of the bootstrap capacitor should be increased as the switching frequency decreases. A charge pump circuit can be used to overcome the problems. This paper deals with an analysis and design of a charge pump circuit for the floating gate power supply of an IPM. The simulation and experiment are carried out for an induction motor drive system. The results well verifies the validity of the proposed circuit and design method.

A Study to Calculate Inlet Fluid Temperature of the Borehole Heat Exchanger (BHE) using Modified TOUGHREACT (Modified TOUGHREACT를 이용한 지중 열교환기 내 순환 유체의 온도 분포 추정)

  • Kim, Seong-Kyun;Bae, Gwang-Ok;Lee, Kang-Kun;Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.477-480
    • /
    • 2007
  • Inlet fluid temperature of the BRE in the geothermal heat pump system depends on heat exchange rate between the refrigerant of the heat pump and the leaving fluid from the BRE. Because the outlet fluid temperature of the BHE varies with time, inlet fluid temperature has to vary with time. In this study, the module to calculate inlet fluid temperature is developed, which can consider the time-varying outlet fluid temperature and the heat exchange capacity of the heat pump. It is assumed that heat loss or gain of the leaving fluid from outlet to inlet of the BHE is negligible, except when the fluid contacts with the refrigerant of the heat pump. This module is combined with TOUGHREACT, a widely accepted three-dimensional numerical simulator for heat and water flow and geochemical reactions in geothermal systems and is applied to data analyses of the thermal response test.

  • PDF

Development of High Performance LonWorks Fieldbus Control Modules for Network-based Induction Motor Control (네트워크 기반 유도전동기 제어를 위한 고성능 LonWorks 제어모듈 개발)

  • Kim, Jung-Gon;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.319-324
    • /
    • 2005
  • The interface between host processor and the ShortStack Micro Server may be a Serial Communication Interface(SCI). The LonWorks control module with a high performance is developed, which is composed of the 8 bit PIC Microprocessor for host processor and the smart neuron chip for the ShoretStack Micro Server. This intelligent control board is verified as proceeding the various function tests from experimental system with an boost pump and inverter driving systems. It is also confirmed that the developed control module provides stably 0-10VDC linear signal to the input signal of inverter driving system for varying the induction motor speed. Thus, the experimental results show that the fabricating intelligent board carried out very well the various functions in the wide operating ranges of boost pump system. This developed control module expect to apply to industrial fields to require the comparatively exact control and monitoring such as multi-motor driving system with inverter, variable air volume system and the boost pump water supply systems.

  • PDF

Development of Pump-Drive Turbine with Hydrostatic Bearing for Supercritical CO2 Power Cycle Application (정압 베어링을 적용한 초임계 CO2 발전용 펌프-구동 터빈 개발)

  • Lee, Donghyun;Kim, Byungock;Park, Mooryong;Yoon, Euisoo
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.153-160
    • /
    • 2020
  • In this paper, we present a hydrostatic bearing design and rotordynamic analysis of a pump-and-drive turbine module for a 250-kW supercritical CO2 cycle application. The pump-and-drive turbine module consists of the pump and turbine wheel, assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 21,000 rpm and the rated power is 143 kW. For the bearing operation, we use high-pressure CO2 as the lubricant, which is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various orifice diameters, and then select the diameter that provides the maximum bearing stiffness. We also conduct a rotordynamic analysis based on the design parameters of the pump-and-drive turbine module. The predicted Campbell diagram shows that there is no critical speed below the rated speed, owing to the high stiffness of the bearings. Furthermore, the predicted damping ratio indicates that there is no unstable mode. We conduct the operating tests for the pump and drive turbine modules within the supercritical CO2 cycle test loop. The pressurized CO2, at a temperature of 136℃, is supplied to the turbine and we monitor the shaft vibration during the test. The test results show that there is no critical speed below the rated speed, and the shaft vibration is controlled to below 3 ㎛.

Design of an One-Chip Controller for an Electronic Dispenser (전자 디스펜서용 단일 칩 제어기 설계)

  • Kim, Tae-Sang;Won, Young-Wook;Kim, Jeong-Beom
    • Journal of IKEEE
    • /
    • v.9 no.2 s.17
    • /
    • pp.101-107
    • /
    • 2005
  • This paper presents an one-chip controller for an electronic dispenser. The electronic dispenser is composed of electronic part and mechanical part. The electronic part is consisted of input keypad, micro-controller, display module, and pump module. In this paper we designed micro-controller for the electronic part. The micro-controller controls display module and pump module. The display module is composed by LCD device, and the pump module is composed by motor device . The micro-controller for an electronic dispenser is designed by VHDL. We used WX12864AP1 for the LCD device and SPS20 for the stepping motor. Also, the micro-controller is designed by Altera Quartus tool and verified with Agent 2000 Design-kit using APEX20K Device. In this paper, we present possibility to adopt of the biomedical device through the one-chip controller for the electronic dispenser.

  • PDF