• Title/Summary/Keyword: Pump Column

Search Result 84, Processing Time 0.025 seconds

New reliquefaction system of Boil-Off-Gas by LNG cold energy (LNG냉열이용 BOG 재액화긍정 해석연구)

  • 윤상국;최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.256-263
    • /
    • 2002
  • The Boil-Off-Gases(BOG) in the LNG production terminal are continuously generated during the unloading, storage and supply processes by the heat penetration. In order to use these gases as useful fuel, the reliquefaction process should be installed to put the reliquefied BOG in the main LNG supply line before the secondary pump in terminal. The current reliquefaction method of BOG in LNG terminal is the direct contact one between LNG and BOG in the absorption column. But the system has severe disadvantage, which is the 10 times of LNG circulation needed for unit mass of BOG reliquefaction. It causes, therefore, high power consumption of LNG circulation pump and excessive city-gas supply, even if short demand of NG is needed in the summer time. In this paper, the new reliquefaction system of BOG by using LNG cold energy with indirect contact in precooler was suggested and analysed. The result showed new indirect contact method of BOG reliquefaction system between LNG cold energy and BOG is much more effective than the current direct contact one because of only about 1.3 times of LNG circulation needed and higher energy saving by pump power reduction.

Practical Use of Self Compacting Concrete to be filled inside the Steel Tube Columns (무다짐 콘크리트를 이용한 높은 40m CFT 기둥의 시공)

  • 김규동;김한준;손유신;이승훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1023-1028
    • /
    • 2003
  • The structure of Tower Palace III Sports Center building was designed as concrete Filled Steel Tube(CFT) Column and the filled-in concrete was designed as high compressive strength of 500kgf/$m_2$. The self compacting concrete(SCC, non-vibrating concrete) with 65$\pm$5cm flow must be applied to this case for filling the CFT by injecting the concrete from the column bottom. Laboratory tests and pilot productions of batcher plant were performed for optimum mix design and the full scale Mock-Up test was performed to check the appicability of the construction method. As a result, we observed that good quality SCC and the pressure change of concrete pump normally used domestically. Based on these results, we have constructed 20-40m height CFT columns successfully.

  • PDF

An Experimental Study on the Thermal Performance Measurement of Standing Column Well type Borehole Heat Exchanger (스탠딩컬럼웰형(SCW) 지중열교환기의 열성능 측정에 관한 실험적 연구)

  • Lee, Sanghoon;Choe, Yongseok;An, Kunmuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.122.2-122.2
    • /
    • 2010
  • Knowledge of ground thermal properties is most important for the proper design of BHE(borehole heat exchanger) systems. The configure type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for in-situ determination of design data for Standing Column Well apply. The main purpose has been to determine in-situ values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a sub-circulation pump, a boiler, temperature sensors, flow meter and a data logger for recording the temperature and circulation fluid flow data. A constant heating power is injected into the SCW through the test rig and the resulting temperature change in the SCW is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective in-situ values of rock thermal conductivity and thermal resistance of SCW.

  • PDF

Full Scale Tests of Concrete Filled Steel Tube Column using High Fluidity Concrete (고유동 콘크리트를 이용한 콘크리트 충전강관 기둥의 실물대 시공실험)

  • Kim Ook-Jong;Lee Do-Bum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.222-227
    • /
    • 2001
  • Full scale construction tests of CFT(concrete filled steel tube) column to solve construction problem and to confirm quality were performed in apartment site. To improve construction efficiency, the tests has been accomplished two stages after the tests for material mixing design had been completed. In the first stage, the experimental variables were the placing methods, existence of guiding pipe, placing velocity and drop height and the height of specimen were $3.6{\cal}m$. In the second stage, Filling steel tube of 9.6m height with concrete was performed by two ways, that is, the pump-up method and the dropping method. The filled condition of the concrete and concrete strength distribution according to the column height were checked and the quality of the CFT column was confirmed.

  • PDF

A Study on Significant Parameters for Efficient Design of Open-loop Groundwater Heat Pump (GWHP) Systems (개방형 지열시스템의 효율적 설계를 위한 영향인자에 대한 연구)

  • Park, Byeong-Hak;Joun, Won-Tak;Lee, Bo-Hyun;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.41-50
    • /
    • 2015
  • Open-loop groundwater heat pump (GWHP) system generally has benefits such as a higher coefficient of performance (COP), lower initial cost, and flexible system size. The hydrogeological conditions in Korea have the potential to facilitate the use of the GWHP system because a large number of monitoring wells show stable groundwater temperatures, shallow water levels, and high well yields. However, few studies have been performed in Korea regarding the GWHP system and the most studies among them dealt with Standing Column Well (SCW). Because the properties of the aquifer have an influence on designing open-loop systems, it is necessary to perform studies on various hydrogeological settings. In this study, the hydrogeological and thermal properties were estimated through various tests in the riverside alluvial layer where a GWHP system was installed. Under different groundwater flow velocities and pumping and injection rates, a sensitivity analysis was performed to evaluate the effect of such properties on the design of open-loop systems. The results showed that hydraulic conductivity and thermal dispersivity of the aquifer are the most sensitive parameters in terms of performance and environmental aspects, and sensitivities of the properties depend on conditions.

A Study on Specific of Ground Water Temperature Changes of the Small Scaled SCW GWHP System in Case of Heating (소규모 SCW 지중열 시스템의 난방시 지하수 온도 변화 특성에 관한 연구)

  • Yang, Seung-Jin;Lee, Won-Ho;Kim, Ju-Young;Hong, Won-Hwa;Ahn, Chang-whan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1347-1352
    • /
    • 2008
  • The SCW ground heat pump system releases ground energy from the ground water of ground heat exchanger. In other word, ground water is used to heating through releases ground energy which oneself has. But the thermal efficiency of system is going to down because repetitive process of ground water will lost ground energy in standing column well system and if heating load is continually increase, energy of ground water may be frozen or there are no benefits to use ground energy as it owes just little energy. To solve these problems, there are need to exchange water to the ground heat exchanger then the way will be used to maintain Efficiency continually as the way of to be supplied with fresh ground water into ground heat exchanger. However, this type causes waste of ground water. Therefore it is essential to discharge water to outside timely on a heat exchanger. Therefor through a study, find out the best time to discharge water to outside and exchange water to ground heat exchanger, and propose to the DB of design of the ground heat exchanger.

  • PDF

Fast Analytical Method of PCDD/Fs in Water by Combination of Disk Type Solid Phase Extraction and Column Coupling Chromatography (디스크타입 고상추출장치 및 컬럼커플링을 이용한 물시료의 PCDD/Fs 간이분석법)

  • Choi, Jae-won;Moon, Bu-shik;Kim, Kyoung-sim;Kim, Jung-hee;Kim, Sun-heong;Baek, Kyung-hee
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.879-886
    • /
    • 2006
  • The analytical methods of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans (PCDD/Fs) for water sample with extremely low concentration was developed to extract large volume and to improve fast chromatography for clean up. Semi-automated solid phase extraction (SPE) system and column coupling chromatography using elution pump was optimized and applied to each processes of treatment plant. Results of disk type SPE indicated that this system was applicable below 40 L of aqueous sample with a flow rate of 0.08 ~ 0.2 L/min. Average recoveries of SPE using labeled sampling spike of $^{37}Cl$-2,3,7,8-TCDD was 97%. Column coupling method resulted in reduced clean up time, solvent volume, increased average recoveries with constant elution rate. The combined methods were applied to the monitoring of drinking water treatment plant. Limits of detection (LOD) of each process were calculated. For example, LOD of raw and treated water ranged 0.094~0.968 pg/L and 0.028~0.364 pg/L, respectively. Combined methods of extraction and cleanup techniques provided fast analysis of PCDD/Fs with high accuracy and low LODs for water samples.

An Analysis of Attenuation Effect of Pressure Head Using an Air Chamber (공기실을 사용한 압력수두의 완화효과에 대한 분석)

  • Lee, Jae-Su;Yun, Yong-Nam;Kim, Jung-Hun
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.141-150
    • /
    • 1995
  • An air chamber is designed to keep the pressure from exceeding a predetermined value, or to prevent low pressures and column separation. Therefore, it can be used to protect against rapid transients in a pipe system following abrupt pump stoppage. In this research, an air chamber was applied to a hypothetical pipe system to analyze attenuation effect of pressure head for different air volumes, locations, chamber areas, coefficients of orifice loss and polytropic exponents. With an increase of air volume, the maximum pressure head at pump site is decreased and the minimum pressure head is increased. For different locations and areas of the chamber, the attenuation effects do not show much difference. Also, as the orifice loss coefficient increases, the maximum pressure head is decreased. For different polytropic exponents, isothermal process shows lower maximum pressure head than that of the adiabatic process.

  • PDF

Application of the Geothermal Hybrid System for Huge Size Common Structures with Heating & Cooling System (지열 Hybrid System 개발을 통한 대형 공동구조물 지열에너지 적용성 평가)

  • Park, Si-Sam;Na, Sang-Min;Park, Jong-Hun;Rhee, Keon-Joong;Kim, Tae-Won;Kim, Sung-Yub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.588-591
    • /
    • 2009
  • Ground source heat pump system; GSHPs is close to most practical use for early stage investment cost and energy efficiency in new renewable energies, and currently considered utilizing to the heat and cooling system of a building. Particularly, the case to utilize 'Standing Column well heat source gathering method' in the open standards process to have the excellent capability of gathering geothermal source is increased. But the research for the optimal design technology and the assessment of a pollution level of the ground to utilize a single well for gathering geothermal is insignificant and the design is insufficient. The heating and cooling system and the equipment to utilize a large size residential development to have over 1000 households have not developed yet. Therefore, our company developed 'geothermal hybrid system' which can construct the heat and cooling system using geothermal energy for a large size residential development of over 1000 households and conducted the evaluation of economic feasibility. Moreover we developed automatic equipment for gathering geothermal source and PLC (Programmable logic controller) to have optimal efficiency and FCU (fan coil unit) considering the floors of large size apartments.

  • PDF

Performance Analysis for Open-loop Geothermal System with Spill-way technology by Real-scale Experiment (관정간 도수통로를 설치한 개방형 지열 시스템의 냉방성능 실험)

  • Kim, Hong kyo;Bae, Sangmu;Nam, Yujin;Jeoun, Oun;Oh, Jong Hyun;Lee, Byong Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.4
    • /
    • pp.186-194
    • /
    • 2018
  • A ground-source heat pump system (GSHP) is more energy efficient than other heat-source systems because it uses annual constant underground and water temperatures. Especially, two-well geothermal systems using groundwater as the heat source can achieve higher performance than closed-loop geothermal systems. However, performance of two-well geothermal systems is decreased by occurring overflow according to scale during long-term operations. Therefore, this study presents a two-well pairing geothermal system that controls the groundwater level of a diffusion well. In addition, a two-well pairing geothermal system and an SCW geothermal system were installed, and a comparative analysis of cooling performance depending on system operation under the same load conditions was conducted. The result was that the average heat pump coefficient of performance (COP) of the two-well pairing system was 6.5, and the entire system COP was 4.3.