• Title/Summary/Keyword: Pump Case

Search Result 520, Processing Time 0.025 seconds

Elevation of Depressed Skull Fracture with a Cup of Breast Pump and a Suction Generator : A Case Report in Technical Aspects

  • Kim, Young-Jin;Lee, Sang-Koo;Cho, Maeng-Ki;Kim, Young-Joon
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.4
    • /
    • pp.346-348
    • /
    • 2007
  • Surgical elevation of the depressed bone is known to be the conventional treatment usually recommended for a simple depressed skull fracture in the adult or pediatric age. The authors introduce, however, a case of depressed skull fracture in an infant which was elevated by means of a cup of breast pump and a suction generator without surgical elevation. In our case, without surgery, a 'cup-shaped' depressed skull fracture in an infant was safely elevated with no neurological signs. This method is considered a simple, effective, safe, and alternative procedure in an infant with simple depressed skull fracture.

Performance Analysis of Hybrid Heat Pump System of the Air-to-Air/Air-to-Water with the Ambient Temperature (외기온 변화에 따른 공기-공기/공기-물 형태로 된 복합형 열펌프 시스템의 성능 특성 분석)

  • 송현갑
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.273-278
    • /
    • 2000
  • The hybrid heat pump system of the air to air and / or air to water was composed and its COP was analyzed with the ambient temperature on the opened and closed loop system respectively. The results be indicated by the equation(7) that the COP(Coefficient of Performance) of air-source(air to air and / or air-water) heat pump is effected with the ambient air temperature and AVACTHE.(Automatic Variable Area Capillary Type Heat Exchanger) 2. The COP of air-to-water heat pump without AVACTHE decreased in accordance with the ambient temperature decrease, however in case of the heat pump with AVACTHE the COP was maintained at 2.8∼3.0 level when the ambient temperature decrease from -$5^{\circ}C$ to $-11^{\circ}C$. 3. The COP of the air-to-water heat pump operated on the open loop was higher 40∼58% than that of the heat pump operated on the close loop. 4. The lower ambient temperature air effect on the COP of the air-to-air heat pump operated on the semi closed loop could be controlled using the AVACTHE, and at the high ambient air temperature the COP increased using the Bypass circuit.

  • PDF

Efficiency Analysis of the HVAC system in the School Facilities Using the Geothermal Energy -Focused on the energy consumption- (지열을 이용한 학교시설의 냉·난방시스템 효율성분석 -에너지 소비량을 중심으로-)

  • Park, Dong-Soon;Lee, Jae-Rim
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.6 no.2
    • /
    • pp.25-52
    • /
    • 2007
  • This paper is focused on the economical efficiency of the geothermal heat pump system in school. As the importance of problems of environment and energy becomes larger, the development and distribution of energy-saving technology in the whole nation has become influential. This paper is intended, targeting on school buildings scattered all over the country, to evaluate the introduction and possibility of a terrestrial heat system which is in the first stage of introduction in the country, through energy consumption and efficiency in case where a terrestrial heat system is introduced. To do that, the author performed a qualitative analysis of the heat pump system using various terrestrial heat energy and the system introduced to existing school buildings and, through the analysis, made tentative evaluation on the most environment-friendly and energy saving type system. Also, the author performed simulation analysis using a currently typical school building standard and, on the basis of this result, conducted efficiency analysis of various heat pump systems. The conclusion according to synthetical analysis & evaluation can be summarized as follows. In case a heat pump system is introduced to a school building, it was deemed the investment in the early stage would increase, but the investment could be collected within 5~6 years through reduction of large operation expenses. Also, it was analyzed in case of terrestrial heat contracted heat mode using midnight electric power among heat pump systems, not only early investment but also operation expenses could be reduced to a great extent. Accordingly in case the system using terrestrial heat energy is applied to the school buildings that are to be newly built or repaired in the future, it will provide an object-lesson to students as well as contributing to energy saving.

  • PDF

Experiments on Single-Disk Pumps for the Transportation of Micro-scale Water Life (미소 수중 생물체 이송용 단판 디스크 펌프의 성능 실험)

  • Zhang, Z.Q.;Chang, S.M.;Jeong, Y.H.;Yang, J.S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.18-25
    • /
    • 2011
  • A boundary-layer pump with a single disk has been experimented to obtain its characteristic curve by changing the impeller of a centrifugal pump to a single disk. The primary objective to use of these types of pumps is to avoid hurting water life during transportation unnecessarily. The change of impeller should degrade the performance of pump, so we used the method to increase the roughness on the disk with sandpaper and mesh. The enhancement of shear force from the rotation of disk to the internal flow brought an augmentation of momentum transport, and the characteristics were far improved from the original single-disk pump without decreasing the survival rate of water life in the case of Pseudobagrus fulvidraco (bullhead fish). However, in the case of Artemia cyst (zooplankton), the survival rate was very degraded due to the micro scale smaller than turbulent eddy size. The result of this study could be used for the design of transportation and bio-filtering of water lying on a specific bandwidth of its scale of size.

An Experimental Study on the Performance of Inverter Heat Pump with a Variation of Frequency and Capillary Size

  • Choi, Jong-Min;Kim, Yong-Chan;Kim, Jong-Yup
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.27-35
    • /
    • 1998
  • An experimental study was performed to investigate the optimum cycle of an inverter heat pump as a function of frequency. The performance of the inverter heat pump with the rated cooling capacity of 4,141 W(3,550kcal/h) was measured with a variation of frequency, indoor and outdoor temperature, and length of capillary tube in the psychrometric test room. As a base case, the inverter heat pump with the standard capillary length of l,000mm(optimum size for the frequency of 60Hz) and ASHRAE Test condition "A" was tested by varying frequency from 30Hz to 80Hz. Then, the optimum cycles were investigated by varying the length of capillary tube at each frequency level of 30, 60 and 80Hz. Based on the experimental data, the change of system characteristics between the optimum and the base case were analyzed for each selected frequency level. Generally, for low frequency level(30Hz), the longer length of the capillary tube compared with the standard size showed the higher energy efficiency ratio(EER), while for high frequency level(80Hz) the shorter length of the capillary tube showed the higher EER.

  • PDF

An experimental study on the performance of inverter heat pump with a variation of frequency and capillary size (인버터 열펌프의 주파수 및 모세관 길이 변화에 따른 시스템 성능특성의 실험적 연구)

  • Choi, J.M.;Kim, Y.C.;Kim, J.Y.;Bae, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.64-72
    • /
    • 1997
  • An experiment study was performed to investigate the optimum cycle of an inverter heat pump as a function of frequency. The performance of the inverter heat pump with the rated cooling capacity of 4141W(3550kcal/h) was measured with a variation of frequency, indoor and outdoor temperature, and length of capillary tube in the psychrometric test room. As a base case, the inverter heat pump with the standard capillary length of 1000mm which was optimum size for the frequency of 60Hz and ARHRAE Test condition A was tested by varying frequency from 30Hz to 80Hz. Then, the optimum cycle was invesigated by varying the length of capillary tube at each frequency levels of 30, 60 and 80Hz. Based on the experimental data, the change of system characteristics between the optimum and the base case were analyzed for each selected frequency levels. Generally, for low frequency level(30Hz), the longer length of the capillary tube compared with the standard size showed the higher EER, while for high frequency level(80Hz) the shorter length of the capillary tube showed the higher EER.

  • PDF

Pre-Analysis Study on Ground Source Heat Pump System in Building with RETScreen (RETScreen을 활용한 건물에서의 지열 히트펌프 시스템 적용 사전 분석연구)

  • Kim, Yu Jin;Lee, Kwang-Seob;Lee, Euy-Joon;Kang, Eun-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.2
    • /
    • pp.1-10
    • /
    • 2020
  • Korea government published renewable energy obligation policy that public building must be supplied some part of total consumption energy (2019: 27%, 2020: 30%). RETScreen is freely available global energy tool that developed by Canadian National Energy Laboratory to quantify energy saving to compare conventional system. This program can be performed energy modeling, cost analysis, greenhouse gas emission analysis and financial analysis. In this study, GSHP (Ground source heat pump) heating and cooling system were studied for the energy deliverly and ROI (Return On Investment) in an office building. Three cases were studied according to the number of HP (Heat pump) units for the 1,000㎡ office building located in Daejeon. Results indicated that the energy delivery of the case 1 (1 HP unit) covered 57% of the office building heating and cooling energy consumption. The case 2 (2 HP units) covered 87.8% and the case 3 (3 HP units) covered 96.8% of the office building energy consumption. The ROI of the case 1 indicated 7.9 years. While 8.2 years for the case 2 and 9.7 years for the case 3.

Design of partial emission type liquid nitrogen pump

  • Lee, Jinwoo;Kwon, Yonghyun;Lee, Changhyeong;Choi, Jungdong;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.64-68
    • /
    • 2016
  • High Temperature Superconductor power cable systems are being developed actively to solve the problem of increasing power demand. With increases in the unit length of the High Temperature Superconductor power cable, it is necessary to develop highly efficient and reliable cryogenic pumps to transport the coolant over long distances. Generally, to obtain a high degree of efficiency, the cryogenic pump requires a high pressure rise with a low flow rate, and a partial emission type pump is appropriate considering its low specific speed, which is different from the conventional centrifugal type, full emission type. This paper describes the design of a partial emission pump to circulate subcooled liquid nitrogen. It consists of an impeller, a circular case and a diffuser. The conventional pump and the partial emission pump have different features in the impeller and the discharge flow passage. The partial emission pump uses an impeller with straight radial blades. The emission of working fluid does not occur continuously from all of the impeller channels, and the diffuser allows the flow only from a part of the impeller channels. As the area of the diffuser increases gradually, it converts the dynamic pressure into static pressure while minimizing the loss of total pressure. We used the known numerical method for the optimum design process and made a CFD analysis to verify the theoretical performance.

A Study on the Characteristics of Internal Dynamic Pressure of Vane Pump (베인 펌프의 내부 비정상 압력특성에 관한 연구)

  • 정석훈;정재연
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.79-84
    • /
    • 1998
  • This paper presents the experimental study of the dynamic internal pressure within a vane pump. The measurement of the dynamic internal pressure acting on the line contact between the vane and the camring in a vane pump with intravanes have been investigated. The variations of the radial acting force of a vane are calculated from previously measured results of dynamic internal pressure in four chambers surrounding a vane, and the variations of the film thickness are estimated in both the rotational speed ranges from 600 to 1200 rpm and the delivery pressure ranges from 1 to 14 MPa. The experimental technic has been established to obtain the data for performance analysis, such as reaction forces between vane and camring, friction wear at the contact regions, leakage characteristics and net forces upon the pump shaft in case of the unsteady load which is forced to the intravane pressure balance type vane pump.

Reliability Evaluation of a Slurry Pump (슬러리 펌프의 신뢰성 향상)

  • Jung, Dong Soo
    • Journal of Applied Reliability
    • /
    • v.16 no.4
    • /
    • pp.263-271
    • /
    • 2016
  • Purpose: A slurry pump for flue gas desulfurization system performs a role that discharges the slurry of a plaster shape in a thermal power plant. Since a slurry pump transfers the slurry by the centrifugal force, it has the friction wear in the impeller and liner because of the slurry. Methods: In this study, failure analysis and test evaluation on the slurry pump have been proposed and the process that reliability of the product improves through design improvement has been presented. And failure cause of typical failure case has been investigated and improvement design has been presented. Results: Reliability improvement is established by analysis of the test results of before and after acceleration test. Conclusion: This study can be provided to improve the product reliability through failure analysis of a slurry pump.