• Title/Summary/Keyword: Pulverizing

Search Result 70, Processing Time 0.024 seconds

Optimum Design for an Air Current Pulverizing Blade Using the Computational Fluid Dynamics (CFD분석을 통한 기류식 분쇄기 날개부의 최적설계)

  • Kim, Gun-hoi;Kim, Han-bit
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.8-14
    • /
    • 2020
  • In the air current pulverizing type grinding method, the blade wings fitted inside a casing are rotated at a high speed to generate a cornering air current, which facilitates the collision of materials with one another, leading to the pulverizing phenomenon. In contrast to mechanical grinding, grit pulverizing leads to fine grinding and less acid waste and degeneration of the material. Moreover, this approach prevents the loss of nutritional value, while allowing the milling grain to have an excellent texture. However, the existing air current pulverizing type machines consist of prefabricated blades, which cannot be rotated at a speed higher than 5,000 rpm. Consequently, the grinding process becomes time consuming with a low productivity. To overcome these problems, in this study, the shape and structure of the air current pulverizing type wings were optimized to allow rapid grinding at more than 8,000 rpm. Moreover, the optimal design for the ripening parts for the air current pulverizing type device was determined by performing a computational fluid dynamics analysis based on airflow analyses to produce machinery that can grinding materials to the order of micrometers.

Modular Design for the Dry Pulverizing/Mixing Device (건식분말화/혼합장치의 모듈화 설계)

  • 김영환;진재현;윤지섭;정재후;홍동희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.64-67
    • /
    • 2003
  • The authors have settled general modular design by analyzing related literatures, but general modular design are too massive to be applicable to all process devices. So, the common parts have to be selected, applied, and modified for the devices. We have chosen the dry pulverizing/mixing device for example. We have elected the target modules of this device such as flange, hinge, bolt, nut coupling. The remote assembling and disassembling possibilities of the selected modules have been analyzed from the viewpoints of visibility, interference, approach, weight and so on. We have presented final modular design proper to the target modules. The modular designs which have adopted the modular property been analyzed. The modular design points are comprised of common and unique points. Some points are common for several devices, such as bolt, flange and so on. Others are unique for each device, such as power transmission coupling. The experimental devices have been modified by these modular design points and the design drawings have been presented.

  • PDF

The Application and Producing of High-Bio full Fat Activated Soybean Flour By Electron Wave Drying Soybean With Far-infrared (원적외선 전자파 건조방법을 이용한 고기능성 전지활성 생대두 미세분말의 제조 및 응용)

  • 박정수
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.32-37
    • /
    • 2002
  • In this paper soybean flour to weak heat the soybean pulverizing is a nutritive qualities on the demolition by friction fever. in the soybean moisture and protein albumen, it is get tangled the present of soybean to pulverizing of the hesitate to do difficult. full fat activated soybean flour is the same as lipoxygenase a low temperature by handling to ferment of the not demolition is not method. electron wave the drying soybean with far-infrared to using soybean powder of good powder manufacturing method of development industry a people to health contribution

  • PDF

Development of the slitting device on separation study of pellet and hull (펠릿과 헐의 분리 연구를 위한 슬리팅 장치 개발)

  • 정재후;윤지섭;홍동희;김영환;진재현;박기용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.236-239
    • /
    • 2003
  • The spent fuel slitting device is an equipment developed in order to feed UO$_2$pellet to the dry pulverizing/mixing device. In this study, we have compared and analyzed the handling method of the slitting and that of the pellet and hull, processing time, separating time for 20kgHM, the number of blades, on the existing slitting device using in DUPIC, and spent fuel management technology research and test facility. Also, we have compared and analyzed about an advantage and weak point, designing and producing, processing, establishment, operation, maintenance about the vertical and horizontal slitting device. Based on these results, we have developed the vertical slitting device. By using the results, we have enhanced the slitting processing time(over 40%)in comparison with DUPIC device, and it will is effectively applied to available data for designing and producing of the hot test facility.

  • PDF

Investigation of Physical Property Change in Modified Rice Starch by Ultra Fine Pulverization (초미세분쇄를 이용한 쌀 변성전분의 물리적 특성 변화구명)

  • Han, Myung-Ryun;Chang, Moon-Jeong;Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.160-166
    • /
    • 2007
  • This study was performed to analyze the molecular structural and physical properties changes of modified rice starch, which particle structure was broken using high impact planetary mill and ultra fine pulverizing techniques. The average diameter and specific surface area of rice starch after pulverization decreased 20% and increased 25%, respectively. Low molecular substances content in rice starch using GPC (gel permeation chromatography) increased from 36.5% to 59.5% after pulverizing of rice starch. Damaged starch contents in rice starch also increased from 16.4% to 99.2% after pulverizing of rice starch. Water holding capacity, solubility and transmittance of rice starch after pulverization increased compared to those of control. Apparent viscosity value of rice starch after pulverization decreased to 7% in control based on $30^{\circ}C$ and 20 RPM conditions.

Feasibility Study of a Device for Decladding and Dry Pulverizing/Mixing Spent Fuel (사용후핵연료의 탈피복 및 건식 분말화/혼합 장치의 타당성 분석)

  • 정재후;윤지섭;홍동회;김영환;박기용;진재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.840-843
    • /
    • 2002
  • The dry pulverizing/Mixing device is used to deal with the spent fuels for the safe disposal. The separated pellets from hulls by a slitting device are put and oxidized from UO$_2$ solid pellet to U$_3$O$\_$8/ powder in the device. The device have been developed based on a voloxidation method which is one of several dry de-cladding methods. We have benchmarked dry de-cladding methods, analyzed applicability to the advanced spent fuel management process, integrated and compared several configuration, and finally derived detailed specifications proper to requirements for the device. Also, thermal characteristics of the device such as thermal stress and strain have been analyzed by the commercial software, 1-DEAS, and the reliability of the results have been verified by the KOLAS(Korea Laboratory Accreditation Scheme). The UO$_2$ solid pellets are put in the device which has a capacity of 20 kgHM per a batch, heated up about 600$^{\circ}C$ in the air environment. Then, the UO$_2$ solid pellets are oxidized into the U$_3$O$\_$8/ powder, and the powder is collected in a special vessel. The device has been designed and developed as fellows: the multi-staged fine hole meshes are used to reduce the size of the powder gradually, heat and air(oxygen) are supplied continuously to reduce the reaction time, and slight vibration effect are applied to collect powder cling to the device.

  • PDF

Investigation of Physical Property Change in Modified Corn Starch by Ultra Fine Pulverization (초미세분쇄를 이용한 옥수수 변성전분의 물리적 특성 변화 구명)

  • Han, Myung Ryun;Kim, Ae Jung;Chang, Moon Jeong;Lee, Soo Jeong;Kim, Hee Sun;Kim, Myung Hwan
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.335-340
    • /
    • 2009
  • This study was performed to analyze changes in the molecular structural and physical properties of modified corn starch, in which particle structure was broken using high impact planetary mill and ultra fine pulverizing techniques. The average diameter and specific surface area of the modditied corn starch after pulverization decreased 50% and increased 567%, respectively. Content of low molecular substances mersured using gel permeation chromatography (GPC) increased from 21.0% to 86.5% after pulverizing corn starch. Damaged starch content also increased from 9.63% to 83.57% after pulverizing corn starch. After pulverization, gel formation capacity corn starch was reduced compared to that of control by structure breakdown.

Effect of pulverizing method on the particle size of matured silkworm powder

  • Kim, Su-Bae;Kim, Kee-Young;Ji, Sang-Deok;Kim, Seong-Wan;Kim, Nam-Suk;Jo, You-Young;Kim, Jong-Gil;Kim, Young-Guk;Koo, Hui-Yeon;Moon, Hyung-Chul;Seok, Young-Seek;Lee, Hyun-Tai
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.37 no.2
    • /
    • pp.105-108
    • /
    • 2018
  • Recently matured silkworm powder was developed by RDA. In this study, the effect of pulverizing method on the particle size of matured silkworm powder was examined. FESEM was performed to observe the morphology and to measure the particle size of silkworm powder. Particle morphology of air-jet mill pulverized powder was round and smooth, however, those of roller-mill and hammer-mill pulverized mature silkworm was more harsh and square. Particle size was varied with pulverizing technique as follows; $1.1{\mu}m$ (air-jet mill), $10{\mu}m$ (roller mill), and $120{\mu}m$ (hammer mill), respectively. A proximate analysis results of air-jet mill powder showed that crude protein, crude lipid, crude fiber, and ash was 73%, 12%, 1.95%, and 3.4%, respectively. According to our results, air-jet mell technique might be used to make a tiny matured silkworm powder.

Comparison of Work Performance of Crank-type and Rotary-type Rotavators in Korean Farmland Conditions

  • Nam, Ju-Seok;Kang, Dae-Sig;Kang, Young-Sun;Kim, Kyeong-Uk;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.140-147
    • /
    • 2012
  • Purpose: This study was conducted to understand the work performance of crank-type rotavators and compare them with those of rotary-type rotavators in Korean farmland conditions. Methods: Tillage operations were carried out using both rotavators with the same nominal rotavating width and rated power. During the operations, PTO speed and torque, actual work speed, and rotavating width and depth were measured. To evaluate work performance, pulverizing ratio, inversion ratio, and specific volumetric tilled soil were calculated and compared for each rotavator. Results: It is found that the crank-type rotavator has better specific volumetric tilled soil performance and deep tillage, while the pulverizing ratio is worse. Conclusions: Crank-type and rotary type rotavator have diffenent properties each other in several work performances. It's important, therefore, to choose a suitable type of rotavator that satisfy the farmer's requirements in accordance with the condition of field and the purpose of tillage operation.