• 제목/요약/키워드: Pulsed-Laser Heating

검색결과 17건 처리시간 0.025초

Parametric Studies of Pulsed Laser Deposition of Indium Tin Oxide and Ultra-thin Diamond-like Carbon for Organic Light-emitting Devices

  • Tou, Teck-Yong;Yong, Thian-Khok;Yap, Seong-Shan;Yang, Ren-Bin;Siew, Wee-Ong;Yow, Ho-Kwang
    • Journal of the Optical Society of Korea
    • /
    • 제13권1호
    • /
    • pp.65-74
    • /
    • 2009
  • Device quality indium tin oxide (ITO) films are deposited on glass substrates and ultra-thin diamond-like carbon films are deposited as a buffer layer on ITO by a pulsed Nd:YAG laser at 355 nm and 532 nm wavelength. ITO films deposited at room temperature are largely amorphous although their optical transmittances in the visible range are > 90%. The resistivity of their amorphous ITO films is too high to enable an efficient organic light-emitting device (OLED), in contrast to that deposited by a KrF laser. Substrate heating at $200^{\circ}C$ with laser wavelength of 355 nm, the ITO film resistivity decreases by almost an order of magnitude to $2{\times}10^{-4}\;{\Omega}\;cm$ while its optical transmittance is maintained at > 90%. The thermally induced crystallization of ITO has a preferred <111> directional orientation texture which largely accounts for the lowering of film resistivity. The background gas and deposition distance, that between the ITO target and the glass substrate, influence the thin-film microstructures. The optical and electrical properties are compared to published results using other nanosecond lasers and other fluence, as well as the use of ultra fast lasers. Molecularly doped, single-layer OLEDs of ITO/(PVK+TPD+$Alq_3$)/Al which are fabricated using pulsed-laser deposited ITO samples are compared to those fabricated using the commercial ITO. Effects such as surface texture and roughness of ITO and the insertion of DLC as a buffer layer into ITO/DLC/(PVK+TPD+$Alq_3$)/Al devices are investigated. The effects of DLC-on-ITO on OLED improvement such as better turn-on voltage and brightness are explained by a possible reduction of energy barrier to the hole injection from ITO into the light-emitting layer.

Effect of pulsed laser heating on 3-D problem of thermoelastic medium with diffusion under Green-Lindsay theory

  • Othman, Mohamed I.A.;Atwa, Sarhan Y.
    • Steel and Composite Structures
    • /
    • 제36권3호
    • /
    • pp.249-259
    • /
    • 2020
  • In this work, a novel three-dimensional model in the generalized thermoelasticity for a homogeneous an isotropic medium was investigated with diffusion, under the effect of thermal loading due to laser pulse in the context of Green-Lindsay theory was investigated. The normal mode analysis technique is used to solve the resulting non-dimensional equations of the problem. Numerical results for the displacement, the thermal stress, the strain, the temperature, the mass concentration, and the chemical potential distributions are represented graphically to display the effect of the thermal loading due to laser pulse and the relaxation time on the resulting quantities. Comparisons are made within the theory in the presence and absence of laser pulse.

PLIC 방법을 사용한 Ni-P 디스크의 레이저 존 텍스처링 모사 (Simulation of laser zone texturing of Ni-P disk substrates by PLIC method)

  • 김헌준;하응지;김우승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.255-260
    • /
    • 2000
  • Laser zone texture technology is widely used to enhance the tribological performance of high areal density media. This work investigates the transient process of melting and microscale surface deformation upon pulsed laser heating of Ni-P hard disk substrates by PLIC(Piecewise Linear Interface Calculation) method. The present results are compared with both the experimental and the Donor-Acceptor method results. It is found that the results from PLIC method are better than those of Donor-Acceptor method and they are in good agreements with the experimental results.

  • PDF

Laser-Induced Formation and Disintegration of Gold Nanopeanuts and Nanowires

  • Park, Jung-Shin;Yoon, Jun-Hee;Kim, Hyung-Jun;Huh, Young-Duk;Yoon, Sang-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.819-824
    • /
    • 2010
  • We report the laser-induced formation of peanut-shaped gold nanoparticles (Au nanopeanuts) and gold nanowires (AuNWs), and their morphological properties. Pulsed laser irradiation of citrate-capped gold nanoparticles at 532 nm induces fragmentation, spherical growth, the formation of Au nanopeanuts, and the formation of AuNWs, sequentially. High-resolution transmission electron microscopy images reveal that the Au nanopeanuts are formed by instantaneous fusion of spherical nanoparticles in random orientation by laser heating. Furthermore, Au nanopeanuts are bridged in a linear direction to form AuNWs by an amorphous accumulation of gold atoms in the junction. The laser-produced Au nanopeanuts and AuNWs slowly disintegrate, restoring the spherical shape of the original Au nanoparticles when the laser irradiation is stopped. The addition of citrate effectively prevents them from transforming back to the nanospheres.

TLC와 컬러화상처리를 이용한 자동차 실내 환기유동의 온도장 측정 (Temperature Field Measurement of Ventilation Flow in a Vehicle Interior)

  • 윤정환;이상준;김기원
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.120-128
    • /
    • 1997
  • The variations of the temperature field in a passenger compartment were measured by using a HSI true color image processing system and TLC(Thermochromic Liquid Crystal) solution. This temperature measurement technique was proved to be useful for analyzing the ventilation flow. The flow field in the passenger compartment was visualized using a particle streak method with pulsed laser light sheet. The temperature field and flow field in the passenger copartment were affected significantly by the ventilation mode. The panel-vent mode heating had shorter elapse time to reach a uniform temperature than the foot-vent mode under the same ventilation condition and nonuniformity inside the passenger compartment could be minimized effectively by using the bilevel heating mode. The temperature increase rate in the rear passenger compartment was iower than the front compartment, especially in the vicinity of the rear seat occupants' knee level.

  • PDF

유연성 전자소자 적용을 위한 BNO박막의 저온화학기상증착 (Low Temperature Chemical Vapor Deposition of BNO Thin Films for Flexible Electronic Device Applications)

  • 전상용;성낙진;윤순길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.42-42
    • /
    • 2007
  • In the future, electronic components will be integrated on flexible polymer substrates and then miniaturized by thin films using suitable thin film technologies. In this article, the concept of a room temperature CVD is demonstrated using $Bi_3NbO_7$ (BNO) films with a cubic fluorite structure and their structural and electrical properties were investigated in films deposited without substrate heating. Effects of substrate temperature on electrical properties of BNO films were also studied. Films deposited without substrate heating (real temperature of $50^{\circ}C$) show partially crystallized BNO single phases with grain size of approximately 6.5 nm. Their dielectric and leakage properties are comparable to those of films deposited by pulsed laser deposition at room temperature. The concept of room temperature CVD will become a new paradigm in the deposition of dielectric thin films for flexible electron device applications.

  • PDF

CNT-PDMS Composite Thin-Film Transmitters for Highly Efficient Photoacoustic Energy Conversion

  • Song, Ju Ho;Heo, Jeongmin;Baac, Hyoung Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.297.2-297.2
    • /
    • 2016
  • Photoacoustic generation of ultrasound is an effective approach for development of high-frequency and high-amplitude ultrasound transmitters. This requires an efficient energy converter from optical input to acoustic output. For such photoacoustic conversion, various light-absorbing materials have been used such as metallic coating, dye-doped polymer composite, and nanostructure composite. These transmitters absorb laser pulses with 5-10 ns widths for generation of tens-of-MHz frequency ultrasound. The short optical pulse leads to rapid heating of the irradiated region and therefore fast thermal expansion before significant heat diffusion occurs to the surrounding. In this purpose, nanocomposite thin films containing gold nanoparticles, carbon nanotubes (CNTs), or carbon nanofibers have been recently proposed for high optical absorption, efficient thermoacosutic transfer, and mechanical robustness. These properties are necessary to produce a high-amplitude ultrasonic output under a low-energy optical input. Here, we investigate carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite transmitters and their nanostructure-originated characteristics enabling extraordinary energy conversion. We explain a thermoelastic energy conversion mechanism within the nanocomposite and examine nanostructures by using a scanning electron microscopy. Then, we measure laser-induced damage threshold of the transmitters against pulsed laser ablation. Particularly, laser-induced damage threshold has been largely overlooked so far in the development of photoacoustic transmitters. Higher damage threshold means that transmitters can withstand optical irradiation with higher laser energy and produce higher pressure output proportional to such optical input. We discuss an optimal design of CNT-PDMS composite transmitter for high-amplitude pressure generation (e.g. focused ultrasound transmitter) useful for therapeutic applications. It is fabricated using a focal structure (spherically concave substrate) that is coated with a CNT-PDMS composite layer. We also introduce some application examples of the high-amplitude focused transmitter based on the CNT-PDMS composite film.

  • PDF