• 제목/요약/키워드: Pulsed-Laser Ablation

검색결과 129건 처리시간 0.024초

금속 마이크로입자 및 압밀 시편의 펄스레이저 어블레이션에 의한 나노입자 합성 (Nanoparticle Synthesis by Pulsed Laser Ablation of Metal Microparticle and Consolidated Sample)

  • 김동식;장덕석
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1335-1341
    • /
    • 2003
  • This paper describes the process of nanoparticle synthesis by laser ablation of microparticles and consolidated sample. We have generated nanoparticles by high-power pulsed laser ablation of AI, Cu and Ag microparticles using a Q-switched Nd:YAG laser (wavelength 355nm, FWHM 6ns, fluence $0.8{\sim}2.0J/cm^2$). Microparticles of mean diameter $18{\sim}80{\mu}m$ are ablated in the ambient air. The generated nanoparticles are collected on a glass substrate and the size distribution and morphology are examined using a scanning electron microscope and a transmission electron microscope. The effect of laser fluence, collector position and compacting pressure on the distribution of particle size is investigated. To better understand the process of laser ablation of microparticle(LAM), we investigated the Nd: YAG laser-induced breakdown of Cu microparticle using time-resolved optical shadow images. Nanosecond time-resolved images of the ablation process are also obtained by laser flash shadowgraphy. Based on the experimental results, discussions are made on the dynamics of ablation plume.

C60 및 Si 초미립자 박막의 Laser 반응에 의한 가시광선발광 (Visible light emission from $C_60$ and Si nanoparticle film by laser process)

  • 김민성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.598-601
    • /
    • 2000
  • We investigated the fabrication of Si nanoparticle and $C_{60}$ thin films by pulsed laser ablation. As a result, we observed visible green photoluminescence spectra in the Si/C$_{60}$ multilayer films after laser annealing. It is considered that this green photoluminescence is occurred from SiC particles, which is produced reaction of Si nanoparticles with $C_{60}$ via laser annealing.ing.

  • PDF

Nano Fabrication of Functional Materials by Pulsed Laser Ablation

  • 윤종원
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.6.2-6.2
    • /
    • 2009
  • Nanostructured materials arecurrently receiving much attention because of their unique structural andphysical properties. Research has been stimulated by the envisagedapplications for this new class of materials in electronics, optics, catalysisand magnetic storage since the properties derived from nanometer-scalematerials are not present in either isolated molecules or micrometer-scalesolids. This study presents the experimental results derived fromthe various functional materials processed in nano-scale using pulsed laserablation, since those materials exhibit new physical phenomena caused by thereduction dimensionality. This presentation consists of three mainparts to consider in pulsed laser ablation (PLA) technique; first nanocrystallinefilms, second, nanocolloidal particles in liquid, and third, nanocoating fororganic/inorganic hybridization. Firstly, nanocrystalline films weresynthesized by pulsed laser deposition at various Ar gas pressures withoutsubstrate heating and/or post annealing treatments. From the controlof processng parameters, nanocystalline films of complex oxides and non-oxidematerials have been successfully fabricated. The excellentcapability of pulsed laser ablation for reactive deposition and its ability totransfer the original stoichiometry of the bulk target to the deposited filmsmakes it suitable for the fabrication of various functionalmaterials. Then, pulsed laser ablation in liquid has attracted muchattention as a new technique to prepare nanocolloidal particles. Inthis work, we represent a novel synthetic approach to directly producehighly-dispersed fluorescent colloidal nanoparticles using the PLA from ceramicbulk target in liquid phase without any surfactant. Furthermore, novel methodbased on simultaneous motion tracking of several individual nanoparticles isproposed for the convenient determination of nanoparticle sizedistributions. Finally, we report that the GaAs nanocrystals issynthesized successfully on the surface of PMMA (polymethylmethacrylate)microspheres by modified PLD technique using a particle fluidizationunit. The characteristics of the laser deposited GaAs nanocrytalswere then investigated. It should be noted that this is the first successfultrial to apply the PLD process nanocrystals on spherical polymermatrices. The present process is found to be a promising method fororganic/inorganic hybridization.

  • PDF

열적 메커니즘에 의한 펄스레이저 어블레이션 현상의 수치계산 (Numerical computation of pulsed laser ablation phenomena by thermal mechanisms)

  • 오부국;김동식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1572-1577
    • /
    • 2003
  • High-power pulsed laser ablation under atmospheric pressure is studied utilizing numerical and experimental methods with emphasis on recondensation ratio, and the dynamics of the laser induced vapor flow. In the numerical calculation, the temperature pressure, density and vaporization flux on a solid substrate are first obtained by a heat-transfer computation code based on the enthalpy method, and then the plume dynamics is calculated by using a commercial CFD package. To confirm the computation results, the probe beam deflection technique was utilized for measuring the propagation of a laser induced shock wave. Discontinuities of properties and velocity over the Knudsen layer were investigated. Related with the analysis of the jump condition, the effect of the recondesation ratio on the plume dynamics was examined by comparing the pressure, density, and mass fraction of ablated aluminum vapor. To consider the effect of mass transfer between the ablation plume and air, unlike the most previous investigations, the equation of species conservation is simultaneously solved with the Euler equations. Therefore the numerical model computes not only the propagation of the shock front but also the distribution of the aluminum vapor. To our knowledge, this is the first work that employed a commercial CFD code in the calculation of pulsed ablation phenomena.

  • PDF

나노초 레이저를 이용한 PMMA의 습식 및 건식어블레이션 비교 연구 (Comparison study of nanosecond laser induced wet and dry ablation of PMMA)

  • 이호
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.243-250
    • /
    • 2019
  • The nanosecond laser assisted ablation have been investigated. The biocompatable polymer PMMA was employed as the target material and the two distinctive surface conditions were test. The first surface condition is a dry surface for which the target surface is exposed to air and the second surface condition is the wet surface for which the target surface is covered with dehydrated water. The ablation volume, the laser induced acoustic wave, the laser induced plasma were investigated for both wet and dry condition. The nanosecond laser pulse ablatied more on the wet surface compared to the dry surface. The enhanced ablation of wet surface is attributed to the confined acoustic wave and the laser-induced plasma in the liquid layer.

레이저 어블레이션 기반 가공 및 계측에서 공정변수의 영향 (Effects of Process Parameters on Laser Ablation Based Machining and Measurements)

  • 정성호;이석희
    • 한국정밀공학회지
    • /
    • 제28권12호
    • /
    • pp.1359-1365
    • /
    • 2011
  • The changes of ablation characteristics with respect to laser parameters and material parameters during pulsed laser ablation of solids were discussed with experimental results. Although laser wavelength, laser pulse width, and laser pulse energy are the primary factors to be considered, it is shown that other parameters such as laser spot size and material properties also critically influence on the ablation results. It is further demonstrated that the microstructural characteristics of the target can lead to completely different ablation rate and surface morphology.

Thin Film Deposition of Tb3Al5O12:Ce by Pulsed Laser Ablation and Effects of Low-temperature Post-annealing

  • Kim, Kang Min;Chung, Jun Ho;Ryu, Jeong Ho
    • Journal of the Optical Society of Korea
    • /
    • 제16권1호
    • /
    • pp.76-79
    • /
    • 2012
  • $Tb_3Al_5O_{12}:Ce$ (TAG:Ce) thin films were successfully deposited by a pulsed laser ablation method on a quartz substrate, and low-temperature post-annealing effects on luminescent properties were investigated in detail. TAG:Ce thin films were analyzed by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The as-deposited films were amorphous, and post-annealing above $700^{\circ}C$ was required for crystallization. The post-annealed TAG:Ce thin films showed strong and broad emission bands around 542 nm and excitations at 451 nm, which all corresponded to transitions between the 4f ground level to the $5d^1$ excited levels of Ce ion.

Characterization of SnO2 thin films grown by pulsed laser deposition under transverse magnetic field

  • Park, Jin Jae;Kim, Kuk Ki;Roy, Madhusudan;Song, Jae Kyu;Park, Seung Min
    • Rapid Communication in Photoscience
    • /
    • 제4권3호
    • /
    • pp.50-53
    • /
    • 2015
  • $SnO_2$ thin films were deposited on fused silica substrate by pulsed laser deposition under transverse magnetic field. We have explored the effects of magnetic field and ablation laser wavelength on the optical properties of laser-induced plasma plume and structural characteristics of the deposited $SnO_2$ films. Optical emission from the plume was monitored using an optical fiber to examine the influence of magnetic field on the population of the excited neutral and ionic species and their decay with times after laser ablation. Also, we employed photoluminescence, x-ray diffraction, and UV-Vis absorption to characterize $SnO_2$ films.