• Title/Summary/Keyword: Pulsed discharge

Search Result 198, Processing Time 0.027 seconds

Micromachining Using Hybrid of Laser Beam and Electrical Discharge Machining (레이저 빔 가공과 방전 가공을 이용한 복합 미세 가공)

  • Kim, San-Ha;Chung, Do-Kwan;Kim, Bo-Hyun;Oh, Kwang-Hwan;Jeong, Sung-Ho;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.108-115
    • /
    • 2009
  • Although nanosecond pulsed laser drilling and milling are rapid and non-wear processes in micromachining, the quality cannot meet the precision standard due to the recast layer and heat affected zone. On the other hand, electrical discharge machining (EDM) is a well-known high precision machining process in micro scale; however, the low material removal rate (MRR) and tool wear remain as drawbacks. In this paper, hybrid process of laser beam machining (LBM) using nanosecond pulsed laser and micro EDM was studied for micro drilling and milling. While the quality of the micro structure fabricated by this hybrid process remains as high as direct EDM, the machining time and tool wear can be reduced. In addition, variable depth of layer was introduced as an effective method improving efficiency of hybrid milling.

A Study on Hair Removal Characteristics Using a Long-pulsed Alexandrite Laser

  • Choi Jin-Young;Kim Sang-Gil;Park Jong-Woong;Park Sung-Joon;Kim Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Recently, lasers have become widely used throughout the medical treatment field. Several types of lasers have been used for the purpose of hair removal since the Alexandrite laser was approved by the FDA (Food & Drug Administration) for clinical epilation. In this study, a long-pulsed Alexandrite laser system for hair removal adopting a multi-discharge method in which three flash lamps are turned on consecutively was designed and fabricated. This laser system shows the technology that makes it possible to create extended pulse by turning on three flash lamps consecutively. With this technique, the pulse width can be varied from 4ms∼10ms. Then using this Alexandrite laser system with the pulse width 10ms and the beam size 7mm, hair removal was performed on the back portion of a human hand and leg. This study shows that treatment by the long-pulsed Alexandrite laser produces hair removal with no relevant side effects.

A Study on the Pulsed $CO_2$ Laser by the Switching Control of Leakage Transformer Primary (누설변압기 1차측의 스위칭 제어에 의한 펄스형 $CO_2$레이저에 관한 연구)

  • Chung, Hyeon-Ju;Lee, Dong-Hoon;Kim, Hee-Je
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.541-545
    • /
    • 2000
  • We propose a pulsed $CO_2$laser below 30W by the AC(60Hz) switching control of leakage transformer primary which has some advantages of cost and size compared to a typical pulsed power supply. Pulse repetition rate is adjusted from 5 Hz to 60 to Hz control laser output. In this laser a low voltage open loop control for high voltage pulse discharge circuit is employed to aviod the Hv sampling or switching and high voltage leakage transformer is used to convert low voltage pulse rectified from AC to high voltage one. A ZCS(Zero Crossing Switch) circuit and a PIC(programble one-chip microprocessor are used to control gate signal of SCR precisely. The pulse repetition rate is limited by 60Hz due to the frequency of AC line and a high leadkage inductance. The maximum laser output was about 23 W at pulse repetition rate of 60Hz total gas mixture of $CO_2$ : $N_2$ : He=1: 9: 15 and total pressure of 18 Torr

  • PDF

Optical properties of nitrogen doped ZnO thin films grown by dielectric barrier discharge plasma-assisted pulsed laser deposition (Dielectric barrier discharge 플라즈마 펄스 레이져 증착법을 통해 성장한 nitrogen 도핑 된 산화아연 박막의 광학적 특성)

  • Lee, Deuk-Hee;Kim, Sang-Sig;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1256_1257
    • /
    • 2009
  • We have grown, for the first time to our knowledge, N-doped ZnO thin films on sapphire substrate by employing novel dielectric barrier discharge in pulsed laser deposition (DBD-PLD). DBD guarantees an effective way for massive in-situ generation of N-plasma under the conventional PLD process condition. Low-temperature photoluminescence spectra of the N-doped ZnO film provided near band-edge emission after thermal annealing process. The emission peak was resolved by Gaussian fitting to find a dominant acceptor-bound exciton peak ($A^0X$) that indicates the successful p-type doping of ZnO with N.

  • PDF

Discharge Processes of NO Gas Using Bidirectional Pulsed Voltage (양방향 펄스전원을 이용한 NO 가스의 방전처리)

  • Ju, Heung-Jin;Park, Jeong-Ho;Shim, Jae-Hak;Ko, Kwang-Cheol;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1682-1684
    • /
    • 2001
  • In removing the flue-gas using electrical discharge method, it is important to dissociate or ionize the atoms and molecules by the collisions with energetic electrons and it produces the radicals that are used to decompose the pollutants. For that purpose, a bidirectional pulsed voltage is used to produce lots of energetic electrons efficiently and increase the power efficiency. The simulation is performed with changing the pulsewidth under the fixed applied voltage. The particle-mesh model coupling the NGP(nearest-grid-point) to FEM(finite element method) is used to simulate the behavior of electrons and the spatio-temporal variation of the electric field for the streamer in discharge tube.

  • PDF

Optimization of Process Parameters for EDM using Taguchi Design (Taguchi법에 의한 방전가공의 공정변수 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.78-83
    • /
    • 2015
  • The method of electrical discharge machining (EDM), one of the processing methods based on non-traditional manufacturing procedures, is gaining increased popularity, since it does not require cutting tools and allows machining involving hard, brittle, thin and complex geometry. Modern ED machinery is capable of machining geometrically complex or hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, etc. This paper reports the results of an experimental investigation by Taguchi method carried out to study the effects of machining parameters on material surface roughness in electric discharge machining of SM45C. The work material was ED machined with graphite and copper electrodes by varying the pulsed current, voltage and pulse time. Investigations indicate that the surface roughness is strongly depend on pulsed current.

Formation of Dielectric Carbon Nitride Thin Films using a Pulsed Laser Ablation Combined with High Voltage Discharge Plasma (펄스 레이저 애블레이션이 결합된 고전압 방전 플라즈마 장치를 이용한 유전성 질화탄소 박막의 합성)

  • 김종일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.641-646
    • /
    • 2003
  • The dielectric carbon nitride thin films were deposited onto Si(100) substrate using a pulsed laser ablation of pure graphite target combined with a high voltage discharge plasma in the presence of a N$_2$ reactive gas. We calculated dielectric constant, $\varepsilon$$\_$s/, with a capacitance Schering bridge method. We investigated the influence of the laser ablation of graphite target and DC high voltage source for the plasma. The properties of the deposited carbon nitride thin films were influenced by the high voltage source during the film growth. Deposition rate of carbon nitride films were increased drastically with the increase of high voltage source. Infrared absorption clearly shows the existence of C=N bonds and C=N bonds. The carbon nitride thin films were observed crystalline phase confirmed by x-ray diffraction data.

Optimizing the Process Parameters of EDM on SCM440 Steel (SCM440강의 방전가공에서 공정변수의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.61-66
    • /
    • 2018
  • The objective of this research study is to investigate the optimal process parameters of electrical discharge machining (EDM) on SCM440 steel with copper as a tool electrode. The effect of various process parameters on machining performance is investigated in this study. Modern ED machinery is capable of machining geometrically complex or hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, etc. This paper reports the results of an experimental investigation by Taguchi method carried out to study the effects of machining parameters on material surface roughness in electric discharge machining of SCM440 steel. To predict the optimal condition, the experiments are conducted by using Taguchi's L27 orthogonal array. The work material was ED machined with copper electrodes by varying the pulsed current, pulse on-time, voltage, servo speed and spark speed. Investigations indicate that the surface roughness is strongly depend on pulsed current.

Study of Characteristics of Corona Discharge Plasma in a Wire-Cylinder Type Reactor (Wire-Cylinder형 반응로에서의 코로나 방전 플라스마의 특성 연구)

  • 박승자;박인호;고욱희
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.132-138
    • /
    • 2004
  • We used the self-consistent one-dimensional model applied to FCT algorithm and FEM method in a wire-cylinder type reactor to study the characteristics of corona discharge plasma in air at the atmospheric pressure. At the pulsed do voltage and do voltage, we studied the changes of the characteristic of plasma by computing electron density profile according to the changes of voltage and the size of reactor. The changes of active radius from this result are compared with the data of Peek's. The numerical simulation results for a corona discharge plasma explain the physical mechanism of the discharge process and could be used to obtain the optimized parameters for designing the plasma reactor for pollution abatement.

The high repetition operating characteristics of pulsed Nd:YAG laser by parallel mesh and alternating charge-discharge system (병렬 메쉬 및 교번 충.방전 방식에 의한 펄스형 Nd:YAG 레이저의 고반복 동작특성에 관한 연구)

  • Park, K.R.;Kim, B.G.;Hong, J.H.;Kim, W.Y.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1060-1062
    • /
    • 1999
  • Pulsed Nd:YAG laser is used widely for materials processing and instrumentation. It is very important to control the laser energy density in materials processing by a pulsed Nd:YAG laser. A pulse repetition rate and a pulse width are regarded as the most dominant factors to control the energy density of laser beam. In this study, the alternating charge-discharge system was designed to adjust a pulse repetition rate. And the parallel mesh is added to increase laser output power. This system is controlled by one chip microprocessor and allows to replace an expensive condenser for high frequency to a cheap condenser for low frequency. In addition, we have investigated the current pulse shape of flashlamp and the operating characteristics of a pulsed Nd:YAG laser. As a result, it is found that the laser output of the power supply using the parallel mesh and the alternating charge-discharge system is not less than that of typical power supply. As the pulse repetition rate rises from 10pps to 110pps by the step of 20pps at 1000V and 1200V, it is found that the laser efficiency decreases but the laser output power increases about 5W at each step.

  • PDF