• Title/Summary/Keyword: Pulsed corona discharge

Search Result 33, Processing Time 0.023 seconds

NO Removal Efficiency by Pulsed Corona Discharge Process at Room Temperature (상온 펄스 코로나 방전 공정에 의한 NO 제거 효율)

  • 김동주;박정환;김교선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.337-344
    • /
    • 2002
  • In this study, we analyzed the NO removal efficiency by the pulsed corona discharge process and investigated the effects of several process variables such as initial concentrations of NO, $H_2O$, and NH$_3$, applied voltage, pulse frequency, diameter of the discharge electrode, and residence time. The removal efficiency of NO increased by the addition of $H_2O$ or NH$_3$, but the changes of initial NH$_3$ and $H_2O$ concentrations did not affect the removal efficiency of NO significantly. With the increases of the applied voltage or the residence time, the removal efficiency of NO increased. In addition, with the increases of the pulse frequency of applied voltage, or the diameter of the discharge electrode, the removal efficiency of NO increased. The experimental results can be used as a basis to design the pulsed corona discharge process to remove NO$_{x}$, SO$_{x}$ and VOCs.OCs.

A Study on the NOx Removal Rate by Arrangement of Discharge Electrode in Pulsed Corona Discharge Reactor (펄스 코로나 반응기에서 방전극의 배열에 따른 탈질율 연구)

  • Choi, Min;Park, So-Jin;Wi, Young-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.315-323
    • /
    • 2003
  • The goal of this study if the optimization of discharge electrode for pulsed corona discharge reactor located in thermal power plant. For this purpose, we have performed experiments of NO$_{x}$ removal rate by exchange of discharge electrode diameter and arrangement of discharge electrode in the non -thermal plasma reaction facility using a ethylene as additive. If the diameter and numbers of discharge electrode were larger, the NO$_{x}$ removal rate was higher. From these results, if we optimized the shape and installed numbers of discharge electrode at the pilot plant, we could increase the NO$_{x}$ removal rate with less amount of additive than current amount.mount.

Experimental Analysis on the Desulfurizarion and Denitrification Efficiencies in Pulsed Corona Discharge Process (펄스 코로나 방전 공정에서 탈질, 탈황 효율의 실험적 분석)

  • Kim, Sung-Min;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.181-186
    • /
    • 2003
  • In this study, we analyzed $NO_x$ and $SO_x$ removal efficiencies by a pulsed corona discharge process and investigated the effect of several process variables. The removal efficiencies of NO and $SO_2$ were measured changing the process variables of initial concentrations of NO, $H_2O$, and $NH_3$, $SO_2$, applied voltage, pulse frequency and residence time. As the applied voltage or the frequency of applied voltage or the residence time increases, the NO and $SO_2$ removal efficiencies increase. The NO and $SO_2$ removal efficiencies also increase by the addition of $O_2$ or $H_2O$, or by using the large diameter of the discharge electrode. The experimental results can be used as a basis to design the pulsed corona discharge process to remove $NO_x$, $SO_x$ and VOCs.

  • PDF

DeNOx modeling in $N_{2}/O_{2}$ gas by pulsed corona discharge ($N_{2}/O_{2}$ 혼합가스에서 펄스코로나 방전을 이용한 NOx 제거 모델링에 관한 연구)

  • Park, Kwang-Seo;Lee, Hyoung-Sang;Chun, Bae-Hyeock;Shin, Hyun-Ho;Yoon, Woong-Sup;Chun, Kwang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.117-128
    • /
    • 1999
  • The removal of nitrogen oxides(NOx) from $N_{2}/O_{2}$ gas using a pulsed corona discharge was investigated as a function of the reduced electric field(E/N) and the energy density(J/L). A kinetic model was developed to characterize the chemical reactions taking place in a pulsed corona discharge reactor. The model calculates the fractional concentrations of radical species at each pulse-on period and utilizes the radicals to remove NOx for the subsequent pulse-off period. Electron collision reaction data are calculated using ELENDIF program to solve Boltzmann equation for electron energy distribution function, and the subsequent chemical reactions are calculated using CHEMKIN-II program to solve stiff ODE(ordinary differential equation) problems for species concentrations. The corona discharge energy per pulse and the time-space averaged E/N were obtained by fitting the model to experimental data. The model calculation shows good agreement with the experimental data, and predicts the formation of other species such as $NO_{2}$, $O_{3}$ and $N_{2}O$.

  • PDF

Application of Gas to Particle Conversion Reaction to increase the DeSOx/DeNOx Efficiency under Pulsed Corona Discharge (DeSOx/DeNOx 효율 개선을 위한 펄스 코로나 방전하에서 기체미립자 전환반응의 적용)

  • Choi, Yu-ri;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.249-258
    • /
    • 1998
  • In this paper, we investigated the post-combustion removal of nitrogen oxide($NO_x$) and sulfur oxide($SO_x$) which is based on the gas to particle conversion process by the pulsed corona discharge. Under normal pressure, the pulsed corona discharge produces the energetic free electrons which dissociate gas molecules to form the active radicals. These radicals cause the chemical reactions that convert $SO_x$ and $NO_x$ into acid mists and these mists react with $NH_3$ to form solid particles. Those particles can be removed from the gas stream by conventional devices such as electrostatic precipitator or bag filter. The reactor geometry was coaxial with an inner wire discharge electrode and an outer ground electrode wrapped on a glass tube. The simulated flue gas with $SO_x$ and $NO_x$ was used in the experiment. The corona discharge reactor was more efficient in removing $SO_x$ and $NO_x$ by adding $NH_3$ and $H_2O$ in the gas stream. We also measured the removal efficiency of $SO_x$ and $NO_x$ in a cylinder type corona discharge reactor and obtained more than 90 % of removal efficiency in these experimental conditions. The effects of process variables such as the inlet concentrations of $SO_x$, $NH_3$ and $H_2O$, residence time, pulse frequencies and applied voltages were investigated.

  • PDF

Analysis on NOX Removal Efficiencies and Particle Growth Using Pulsed Corona Discharge Reactor (펄스 코로나 방전 반응기를 이용한 NOX 제거 효율 및 입자 성장 분석)

  • Park, Jung-Hwan;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.155-161
    • /
    • 2001
  • In this study, we analyzed the $NO_X$ removal efficiency and particle size distribution by the pulsed corona discharge process and investigated the effect of several process variables. The NO removal efficiencies and the particle characteristics were measured and analyzed as the function of initial concentrations of NO, $H_2O$, and $NH_3$, applied voltage, pulse frequency and residence time. As the frequency of applied voltage increases, or as the applied voltage increases or as the residence time increases, the NO removal efficiency increases. The change of initial $NH_3$ and $H_2O$ concentrations do not affect the NO removal efficiency significantly. The particle concentration and size increases with the increases of initial NO concentration, residence time and applied voltage.

  • PDF

Study on the Measurement of Emission Spectrum and Reaction Mechanism of OH Radical in the Nitrogen Corona Discharge System for Removal of $NO_x$ in Flue Gas (배연가스의 $NO_x$제거용 코로나 방전장치에서 OH 발광 스펙트럼 측정 및 관련 반응 연구)

  • Park, Chul-Woung;Hahn, Jae-Won;Shin, Dong-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.27-38
    • /
    • 1999
  • We constructed a wire-cylinder type pulsed corona discharge system for $NO_x$ removal, which was operated in room temperature. A emission spectrometer was built with a boxcar averager and monochrometer equipped with photo-multiplier tube detector. The sensitivity of the emission spectrometer was greatly improved by synchronizing the emission spectrometer with pulsed corona discharge system using a triggered spark-gap switch. $N_2$ spectrum($c^3{\Pi}_u{\rightarrow}X^1{\Sigma}_g{^+}$) was measured in the range of 300 - 450 nm and oxidizing OH radical emission($A^2{\Sigma}^+{\rightarrow}X^2{\Pi}$) was measured in case $N_2$ was supplied with water bubbling. As wet gas composition of inlet $N_2$ supplied in the discharge system increased, the intensity of OH emission was increased and saturated at wet gas composition 50%. We also investigated additive effect of $C_2H_4,\;H_2O,\;H_2O_2$ on the intensity of OR emission and $NO/NO_2/NO_x$ reduction and analysed the related reaction mechanism in corona discharge process. $H_2O_2$ additive increased the intensity of OH emission and $NO/NO_x$ reduction.

  • PDF

A Characteristic of Additive Reaction in Pulsed Corona Discharge Reactor (PCD 반응기에서의 반응 첨가제의 특성)

  • Choi, Min;Park, So-Jin
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.417-418
    • /
    • 2001
  • 석탄의 연소과정에서 필연적으로 발생하는 황(SOx) 및 질소산화물(NOx)을 제거하기 위한 방법중 하나인 동시처리기술중 PCD(pulsed corona discharge) 반응기의 반응조건은 첨가제의 성분 및 성상에 따라 다양하게 바뀌며 황 및 질소 산화물 제거반응에 큰 영향을 미친다(Akira M., 1995). 따라서 PCD 반응기에 유입되는 가스는 발전소 배기가스 조건을 적용한 상태에서 주입하는 첨가제의 종류 및 양을 변화시켜, 각종 첨가제의 주입이 탈황, 탈질 반응에 미치는 상승효과를 조사하였고 PCD 반응기에서 첨가제의 반응 현상을 규명코자 하였다(송영훈, 1997). (중략)

  • PDF

Study of Characteristics of Corona Discharge Plasma in a Wire-Cylinder Type Reactor (Wire-Cylinder형 반응로에서의 코로나 방전 플라스마의 특성 연구)

  • 박승자;박인호;고욱희
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.132-138
    • /
    • 2004
  • We used the self-consistent one-dimensional model applied to FCT algorithm and FEM method in a wire-cylinder type reactor to study the characteristics of corona discharge plasma in air at the atmospheric pressure. At the pulsed do voltage and do voltage, we studied the changes of the characteristic of plasma by computing electron density profile according to the changes of voltage and the size of reactor. The changes of active radius from this result are compared with the data of Peek's. The numerical simulation results for a corona discharge plasma explain the physical mechanism of the discharge process and could be used to obtain the optimized parameters for designing the plasma reactor for pollution abatement.

Transesterification of Vegetable Oils in Pulsed-Corona Plasma Discharge Process

  • Hyun, Young-Jin;Mok, Young-Sun;Jang, Doo-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • The biodiesel production characteristics in a pulsed-corona plasma reactor has been investigated through parametric tests. Transesterification of rapeseed oil together with camelina oil was done with the change of such variables as voltage of power, molar ratio, KOH catalyst and temperature. The energetic electrons emitted from pulsed-corona plasma has contributed to the enhancement of yield on rapeseed oil in short time (15 min). The higher yield on camelina oil was observed in 5 min. The optimal parameters were shown as the voltage of 23 kV, the molar ratio of 5/1, the content of KOH catalyst of 0.6 wt% and the temperature of $28^{\circ}C$ under the rotating rate of spark gap of 900 rpm.