• Title/Summary/Keyword: Pulse width modulation(PWM)

Search Result 717, Processing Time 0.031 seconds

Speed Control of PMSM using DTC-PWM Approach (DTC-PWM 방식에 의한 PMSM의 속도 제어 기법)

  • Lee, Dong-Hee;Choo, Young-Bae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.268-277
    • /
    • 2009
  • This paper presents an DTC-PWM (Direct Torque Control-Pulse Width Modulation) of PMSM (Permanent Magnet Synchronous Motor). The proposed DTC-PWM method combines a conventional DTC and PWM approach for switching signal generation. The actual torque is estimated by the torque estimator in conventional method, but the switching signal is generated by PWM method according to the switching rules and torque error. A effective voltage vector and zero vector are used to generate the switching signals and asymmetric switching method is applied. A simple calculation of PWM without any complex determination of space vector can assure the constant switching frequency with an constant torque and flux. The proposed torque control scheme for PMSM is verified by experimental results.

Design of LLCL Filter for Single Phase Inverters with Confined Band Variable Switching Frequency (CB-VSF) PWM

  • Attia, Hussain A.;Freddy, Tan Kheng Suan;Che, Hang Seng;El Khateb, Ahmad H.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.44-57
    • /
    • 2019
  • Recently, the use of LLCL filters for grid inverters has been suggested to give better harmonic attenuation than the commonly used L and LCL filters, particularly around the switching frequency. Nevertheless, this filter is mainly designed for constant switching frequency pulse width modulation (CSF PWM) methods. In variable switching frequency PWM (VSF PWM), the harmonic components are distributed across a wide frequency band which complicates the use of a high order filter, including LCL and LLCL filters. Recently, a confined band variable switching frequency (CB-VSF) PWM method has been proposed and demonstrated to be superior to the conventional constant switching frequency (CSF) PWM in terms of switching losses. However, the applicability of LLCL filters for this type of CB-VSF PWM has not been discussed. In this paper, the authors study the suitability of an LLCL filter for CB-VSF PWM and propose design guidelines for the filter parameters. Using simulation and experimental results, it is demonstrated that the effectiveness of an LLCL filter with CB-VSF PWM depends on the parameters of the filters as well as the designed variable frequency band of the PWM. Simulation results confirm the performance of the suggested LLCL design, which is further validated using a lab scale prototype.

Pulse Width and Pulse Frequency Modulated Soft Commutation Inverter Type AC-DC Power Converter with Lowered Utility 200V AC Grid Side Harmonic Current Components

  • Matsushige T.;Ishitobi M.;Nakaoka M.;Bessyo D.;Yamashita H.;Omori H.;Terai H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.484-488
    • /
    • 2001
  • The grid voltage of commercial utility power source hi Japan and USA is 100rms, but in China and European countries, it is 200rms. In recent years, In Japan 200Vrms out putted single phase three wire system begins to be used for high power applications. In 100Vrms utility AC power applications and systems, an active voltage clamped quasi-resonant Inverter circuit topology using IGBTs has been effectively used so far for the consumer microwave oven. In this paper, presented is a half bridge type voltage-clamped high-frequency Inverter type AC-DC converter using which is designed for consumer magnetron drive used as the consumer microwave oven in 200V utility AC power system. This zero voltage soft switching Inverter can use the same power rated switching semiconductor devices and three-winding high frequency transformer as those of the active voltage clamped quasi-resonant Inverter using the IGBTs that has already been used for 100V utility AC power source. The operating performances of the voltage source single ended push pull type Inverter are evaluated and discussed for consumer microwave oven. The harmonic line current components In the utility AC power side of the AC-DC power converter operating at ZVS­PWM strategy reduced and improved on the basis of sine wave like pulse frequency modulation and sine wave like pulse width modulation for the utility AC voltage source.

  • PDF

Effects of Modulation Type on Electrically-Elicited Tactile Sensation (전기자극 변조방식이 체성감각에 미치는 영향)

  • Hwang, Sun-Hee;Ara, Jawshan;Song, Tong-Jin;Bae, Tae-Sue;Park, Sang-Hyuk;Khang, Gon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.711-716
    • /
    • 2012
  • The purpose of this study was to investigate how the modulation method affects the effectiveness of eliciting tactile sensations by electrical stimulation. Two methods were employed and the results were compared and analyzed; pulse amplitude modulation (PAM) and pulse width modulation (PWM). Thirty-five healthy subjects participated in the experiments to measure the stimulation intensity that began to elicit a tactile sensation - activation threshold (AT). Constant-current monophasic rectangular pulse trains were employed, and the stimulation intensity was varied from zero until the subject felt any uncomfortable sensation. The step size of the stimulation intensity was 100nC/pulse. After each experiment, the subject described the sensation both quantitatively and qualitatively. The two modulation methods did not make a significant difference as far as the AT values were concerned, but most of the subjects showed 'intra-individual' consistency. Also, it was confirmed that our range of the stimulation parameters enabled us to obtain three major tactile sensations; tickling, pressure and vibration. The results suggested that the stimulation parameters and the modulation type should be selected for each individual and that selective electrical stimulation of the mechanoreceptors needs more diversified researches on the electrode design, multi-channel stimulation protocol, waveforms of the pulse train, etc.

Optimal Selection of Arm Inductance and Switching Modulation for Three-Phase Modular Multilevel Converters in Terms of DC Voltage Utilization, Harmonics and Efficiency

  • Arslan, Ali Osman;Kurtoglu, Mehmet;Eroglu, Fatih;Vural, Ahmet Mete
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.922-933
    • /
    • 2019
  • The arm inductance (AI) of a modular multilevel converter (MMC) affects both the fault and circulating current magnitudes. In addition, it has an impact on the inverter efficiency and harmonic content. In this study, the AI of a three-phase MMC is optimized in a novel way in terms of DC voltage utilization, harmonics and efficiency. This MMC has 10 submodules (SM) per arm and the power circuit topology of the SM is a half-bridge. The optimum AI is adopted and verified in an MMC that has 100 SMs per arm. Then the phase shift (PS) and phase disposition (PD) pulse width modulation (PWM) methods are investigated for better DC voltage utilization, efficiency and harmonics. It is found that similar performances are obtained for both modulation techniques in terms of DC voltage utilization. However, the total harmonic distortion (THD) of the PS-PWM is found to be 0.02%, which is slightly lower than the THD of the PD-PWM at 0.16%. In efficiency calculations, the switching and conduction losses for all of the semiconductor are considered separately and the minimum efficiency of the 100-SM based MMC is found to be 99.62% for the PS-PWM and 99.64% for the PD-PWM with the optimal value of the AI. Simulation results are verified with an experimental prototype of a 6-SM based MMC.

A High-Power Voltage Mode Buck Converter IC for Automotive Applications (자동차용 고출력 전압모드 벅컨버터 IC)

  • Park, Hyeon-Il;Seo, Min-Sung;Park, Shi-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.83-84
    • /
    • 2009
  • This paper presents a step-down converter IC for automotive applications. This device was designed for a 40V/1A high-power output for voltage reference of automotive IC. It provides 250kHz PWM(pulse width modulation) and PFM(pulse frequency modulation) according to load conditions. This device was simulated Spectre of IC Design Tool And fabricated Dong-bu Hitec 0.35um BD350BA process.

  • PDF

Independently-Controlled Dual-Channel LED Driver using LLC Resonant Converter (LLC 공진형 컨버터를 이용한 독립제어 가능한 2 채널 LED 구동회로)

  • Hwang, Min-Ha;Choi, Yoon;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.142-149
    • /
    • 2012
  • The independently regulated dual-output LLC resonant converter using only one power stage and one control IC is proposed in this paper. The conventional dual-output LLC resonant converter requires the extra non-isolated DC/DC converter to obtain the tightly regulated slave output voltage, which results in the low power conversion efficiency and high production costs. On the other hand, since the proposed converter controls the master and slave output voltages by pulse width modulation(PWM) and pulse frequency modulation(PFM), it can achieve tightly regulated dual output voltages without the additional non-isolated DC/DC converter. Therefore, it features a high efficiency and low cost. To confirm the validity of the proposed converter, theoretical analysis and experimental results from a 40W LED driver prototype are presented.

Fuzzy PWM Speed Algorithm for BLDC Motor (BLDC 모터용 Fuzzy PWM 속도 알고리즘)

  • Shin, Dong-Ha;Han, Sang-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.295-300
    • /
    • 2018
  • Conventionally, a PI control algorithm has been widely used as a speed control algorithm for BLDC motor. The PI control algorithm has a disadvantage in that is slow to reach the steady state due to the slow speed and torque response with various speed changes. Therefore, in this paper, PWM fuzzy logic control algorithm which can reach the steady state quickly by improving the response speed although there is a little overshoot is proposed. PWM reduces response speed and fuzzy logic control algorithm minimizes overshoot. The proposed PWM fuzzy logic control algorithm consists of DC chopper, PWM duty cycle regulator, and fuzzy logic controller. The performance and validity of the proposed algorithm is verified by simulation with Simulink of Matlab 2018a.

A Study on the Utility Interactive Photovoltaic System Using a Chopper and PWM Voltage Source Inverter for Air Conditioner a Clinic room (병실 냉.난방을 위한 초퍼와 PWM 전압형 인버터를 이용한 계통 연계형 태양광 발전시스템에 관한 연구)

  • Hwang, L.H.;Na, S.K.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.360-369
    • /
    • 2008
  • The solar cells should be operated at the maximum power point because its output characteristics were greatly fluctuated on the variation of insolation, temperature and load. It is necessary to install an inverter among electric power converts by means of the output power of solar cell is DC. The inverter is operated supply a sinusoidal current and voltage to the load and the interactive utility line. In this paper, the proposes a photovoltaic system is designed with a step up chopper and single phase PWM voltage source inverter. Synchronous signal and control signal was processed by one-chip microprocessor for stable modulation. The step up chopper is operated in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power point of solar cell without any influence on the variation of insolation and temperature for solar cell has typical dropping character. The single phase PWM voltage source inverter is consists of complex type of electric power converter to compensate for the defect, that is, solar cell cannot be develop continuously by connecting with the source of electric power for ordinary using. It can be cause the efect of saving electric power, from 10 to 20%. The single phase PWM voltage source inverter operates in situation, that its output voltage is in same phase with the utility voltage. The inverter are supplies an ac power with high factor and low level of harmonics to the load and the utility power system.

Generalized Selective Harmonic Elimination Modulation for Transistor-Clamped H-Bridge Multilevel Inverter

  • Halim, Wahidah Abd.;Rahim, Nasrudin Abd.;Azri, Maaspaliza
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.964-973
    • /
    • 2015
  • This paper presents a simple approach for the selective harmonic elimination (SHE) of multilevel inverter based on the transistor-clamped H-bridge (TCHB) family. The SHE modulation is derived from the sinusoidal voltage-angle equal criteria corresponding to the optimized switching angles. The switching angles are computed offline by solving transcendental non-linear equations characterizing the harmonic contents using the Newton-Raphson method to produce an optimum stepped output. Simulation and experimental tests are conducted for verification of the analytical solutions. An Altera DE2 field-programmable gate array (FPGA) board is used as the digital controller device in order to verify the proposed SHE modulation in real-time applications. An analysis of the voltage total harmonic distortion (THD) has been obtained for multiple output voltage cases. In terms of the THD, the results showed that the higher the number of output levels, the lower the THD due to an increase number of harmonic orders being eliminated.