• Title/Summary/Keyword: Pulse shape analysis

Search Result 115, Processing Time 0.027 seconds

Optimum Design for Piezoelectric Actuator of Inkjet head for Improving Performance (Inkjet head에서의 압전 작동기에 대한 성능 향상을 위한 최적설계)

  • 김시종;조종두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.655-658
    • /
    • 1997
  • In this paper, we intend to develop optimized design algorithm by deciding design parameters which are considered in the first design stage of inkjet printer head. thus, the parameters are such as electric pulse, input voltage of actuator to operate actuator, shape dimension of actuator an so on. in the first design stage, according to such parameters, a lot of time and money to develop inkject printer head are needed. to reduce trial and error and to save development time in the first design stage, optimized design algorithm is required all the more. design algorithm was developed via commercial FE analysis code(ANSYS & COENTOR) for the readability and convenience of algorithm. the reasonability of algorithm was verified by implementing analysis of system stage based on the data of piezoelectric actuator which was designed through algorithm.

  • PDF

A study on the maximum thrust of the Linear Pulse Motor for the head driver (헤드 구동용 Linear Pulse Motor의 최대 추력에 관한 연구)

  • Kim, Jung-Gyo;Jun, Hee-Deuk;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.70-72
    • /
    • 2002
  • LPM that is used for head driver is problem of miniaturization of construction and cost. This can be achieved by most suitable shape decision. and suitable selection of control system. Specially, in LPM that Full step is mm$\sim$um unit. the large change of thrust receives much effect by tooth number per pole. tooth width and slot width about change of the air gap length. Therefore, this paper presents LPM that use for suitable head driver to reduce of the structure and the cost. to generate maximum thrust of LPM, and finds the proportion of the tooth pitch to tooth width and the slot width about change of the air gap length through FEM analysis. Also, applying different tooth width and slot width that is given as analysis result. this paper presented model that thrust is improved.

  • PDF

A Parametric Study on Double-Slit-Type Rupture Disc of Pulse Separation Device (펄스분리장치의 이중 슬릿형 파열판 매개변수 연구)

  • Han, Houk-Seop;Cho, Won-Man;Lee, Won-Bok;Koo, Song-Hoe;Lee, Bang-Eop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.101-110
    • /
    • 2010
  • Dual pulse rocket motor is a solid motor with two grains separated by a bulkhead and rupture disc. The elasto-plastic explicit dynamic analysis for the rupture disc was conducted by finite element method. The effect of the slit geometry of a rupture disc was parametrically analyzed in terms of rupture time and shape. The results can be used to control the rupture pressure by changing the slit geometry of rupture disc.

A Parametric Study on Rupture Disc with Radial Slit of Pulse Separation Device (원주방향 슬릿을 가진 파열판의 매개변수 연구)

  • Han, Houk-Seop;Cho, Won-Man;Lee, Won-Bok;Koo, Song-Hoe;Lee, Bang-Eop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.261-264
    • /
    • 2010
  • Dual Pulse Rocket Motor is a solid rocket motor with two grains separated by a bulkhead and rupture disc. The elasto-plastic explicit dynamic analysis of rupture disc was conducted by the finite element method. The effect of the slit geometry of rupture disc with radial slit was parametrically analyzed in terms of rupture time and shape. The results can be used to control the rupture pressure by changing the slit geometry of rupture disc.

  • PDF

A Parametric Sturdy on Double Slit Type Rupture Disc of Pulse Separation Device (펄스분리장치의 이중 슬릿형 파열판 매개변수 연구)

  • Han, Houk-Seop;Cho, Won-Man;Koo, Song-Hoe;Lee, Bang-Eop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.105-112
    • /
    • 2010
  • Dual Pulse Rocket Motor is a solid rocket motor with two grains separated by a bulkhead and rupture disc. The elasto-plastic explicit dynamic analysis of rupture disc was conducted by finite element method. The effect of the slit geometry of a rupture disc was analyzed for rupture time and shape by the parametric study. The results can be used to control the rupture pressure by the change the slit geometry of a rupture disc.

  • PDF

Analysis of Magnetic Flux Path and Static Thrust Force of the Double-Side Linear Pulse Motor (양측식 리니어 펄스 모터의 자로와 정특성 해석)

  • Kim, Seong-Jong;Lee, Eun-Ung;Kim, Seong-Heon;Kim, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.493-498
    • /
    • 2002
  • Double-side linear pulse motor(DSLPM) has more advantages than single-side linear pulse motor because noise and vibration can be considerably decreased by countervailing the normal forces, which is generated between two stators and mover. However, DSLPM has more complicated magnetic flux path and layout of stator pole toot/mover tooth rather than single-side linear pulse motor In this paper, DSLPM is designed and fabricated by considering the air gap magnetic density, shape of tooth and slot. In order to verify the characteristics of DSLPM, the air gap magnetic flux density is analyzed by 2D FEM and the magnetic flux path is analyzed by 3D FEM. Also the static thrust forces is obtained with the analyzed results.

Finite element analysis for prediction of weld bead shape of Nd:YAG pulse laser welding for AISI 304 stainless steel plate (AISI 304 스테인리스 강판의 Nd:YAG 펄스 레이저 용접비드 형상예측을 위한 유한요소해석)

  • Cho Haeyong;Kim Kwanwoo;Hong Jinuk;Lee Jaehoon;Suh Jeong
    • Laser Solutions
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2005
  • Pulse laser welding of AISI 304 stainless steel plate was simulated to optimize welding conditions by using commercial finite element code MARC. Due to geometric symmetry, a half model of AISI 304 stainless steel plate was considered. for the heat transfer analysis, user subroutines were applied to boundary condition. The material properties such as conductivity, specific heat, and mass density were given as a function of temperature and the latent heat associated with a given temperature range was considered. A moving heat source was designed on the basis of experimental data. As a result, Nd:YAG laser welding for AISI 304 stainless steel was successfully simulated and it should be useful to determine optimal welding condition.

  • PDF

A Study on BEM-Based Numerical Simulation Technique for Underwater Explosions (수중 폭발 시뮬레이션을 위한 경계 요소법 기반의 수치 해석 기법 연구)

  • Choung, Joonmo;Lee, Jae-bin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.271-277
    • /
    • 2020
  • Recoverability and vulnerability of navy ships under underwater explosion are critical verification factors in the acquisition phase of navy ships. This paper aims to establish numerical analysis techniques for the underwater explosion of navy ships. Doubly Asymptotic Approach (DAA) Equation of Motion (EOM) of primary shock wave and secondary bubble pulse proposed by Geers-Hunter was introduced. Assuming a non-compressive fluid, reference solution of the DAA EOM of Geers-Hunter using Runge-Kutta method was derived for the secondary bubble pulse phase with an assumed charge conditions. Convergence analyses to determine fluid element size were performed, suggesting that the minimum fluid element size for underwater explosion analysis was 0.1 m. The spherical and cylindrical fluid domains were found to be appropriate for the underwater explosion analyses from the fluid domain shape study. Because the element size of 0.1 m was too small to be applied to the actual navy ships, a very slender beam with the square solid section was selected for the study of fluid domain existence effect. The two underwater explosion models with/without fluid domain provided very similar results in terms of the displacement and stress processes.

Comparison of UNDEX Whipping Response of Hull Girder according to Modeling Methods (해석모델링 방법에 따른 선체거더의 수중폭발 휘핑응답 비교)

  • Kwon, Jeong-Il;Chung, Jung-Hoon;Lee, Sang-Gab
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.631-636
    • /
    • 2005
  • One and three dimensional whipping response analyses of a naval surface combatant subjected to an underwater explosion bubble pulse were carried out to compare the efficiency and accuracy according to the modeling methods. In 1-D analysis, program UNDEXWHIP developed by KIMM was used, which is based on the thin-walled Timoshenko's beam theory and on the modal analysis method using wetted vibratory modes of the hull girder. In 3-D analysis, three finite element models were suggested using LS-DYNA/USA code, such as 3-D beam model considering geometric shape of wetted side shell, coarse and fine 3-D F.E. models. Through the comparison of results from the 1-D and 3-D analyses, it could be confirmed that 1-D analysis result is in good agreement with 3-D analysis ones, and that fine 3-D F.E. model, shock analysis one, is also used both in the shock response and whipping response analyses for the analyst effort and time savings.

Characteristics of Plated Bump on Multi-layer Build up PCB by Pulse-reverse Electroplating (Pulse-reverse도금을 이용한 다층 PCB 빌드업 기판용 범프 생성특성)

  • Seo, Min-Hye;Kong, Man-Sik;Hong, Hyun-Seon;Sun, Jee-Wan;Kong, Ki-Oh;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.151-155
    • /
    • 2009
  • Micro-scale copper bumps for build-up PCB were electroplated using a pulse-reverse method. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance. The electroplated micro-bumps were characterized using various analytical tools, including an optical microscope, a scanning electron microscope and an atomic force microscope. Surface analysis results showed that the electroplating uniformity was viable in a current density range of 1.4-3.0 A/$dm^2$ at a pulse-reverse ratio of 1. To investigate the brightener concentration on the electroplating properties, the current density value was fixed at 3.0 A/$dm^2$ as a dense microstructure was achieved at this current density. The brightener concentration was varied from 0.05 to 0.3 ml/L to study the effect of the concentration. The optimum concentration for micro-bump electroplating was found to be 0.05 ml/L based on the examination of the electroplating properties of the bump shape, roughness and grain size.