• Title/Summary/Keyword: Pulse phase modulation

Search Result 413, Processing Time 0.037 seconds

Analysis and Design of a Three-Phase Synchronous Solid-state Var Compensator using Neutral-Point-Clamped Inverter (NPC 인버터를 이용한 3상 동기형 SVC의 해석 및 설계)

  • Lim, Su-Saeng;Lee, Eun-Woong;Kim, Sung-Heon;Lee, Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.42-45
    • /
    • 1997
  • A synchronous solid-state var compensator(SSVC) system which employs a three-phase neutral-point-darned (NPC) inverter is presented and analyzed for high voltage and high power applications. The proposed SSVC system can compensate for leading and lagging displacement factor. An optimal pulse-width-modulation (PWM) is used as a means of reducing the size of reactive components. A equivalent model is obtained using DQ-transform, and the characteristic of open-loop system are archived from DC and AC analyzes. A $\alpha$ phase-shift control is suggested using a self-controlled dc bus.

  • PDF

A Switching Method of Single Phase Grid Connected Inverter for Common Mode Noise Reduction (계통연계형 단상인버터의 Common Mode Noise 저감을 위한 Switching 방법)

  • Lee, Seung-Ju;Hong, Chang-Pyo;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • A pulse-width modulation (PWM) method for common mode noise reduction in a PWM inverter connected to a single-phase grid is proposed in this study. The extensively used conventional switching method may experience common mode voltage problems, which generate current leakage and electromagnetic induction problems. In the proposed switching method, the neutral point of the output voltage is always fixed at both ends of the input voltage to reduce common mode noise. The validity of the proposed method is proven through simulation and experimental results.

The Design of Digital Controller for Three-Phase Boost Converter using DSP (DSP를 이용한 3상 부스트 컨버터의 디지털 제어기 설계)

  • Cho, Seong-Min;Kim, Beung-Jin;Cho, Heung-Gi;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.11
    • /
    • pp.757-762
    • /
    • 2000
  • This paper presents a digital controller for three-phase Boost Converter. Generally, the conventional Space-Vector Pulse Width Modulation (SVPWM) have complex computation. Thereby, it should be implemented with high performance processor. In order to reduce calculation burden of the conventional SVPWM, digital controller which has a simplified SVPWM algorithm is designed in this study. A proposed digital controller consists of fuzzy pwm controller and prediction controller. In simulations and experiments, the proposed digital controller is validated.

  • PDF

Leg-Balancing Control of the DC-link Voltage for Modular Multilevel Converters

  • Du, Sixing;Liu, Jinjun;Lin, Jiliang
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.739-747
    • /
    • 2012
  • This paper applies carrier phase shifted pulse-width modulation (CPS-PWM) to transformerless modular multilevel converters (MMC) to improve the output spectrum. Because the MMC topology is characterized by the double-star connection of six legs consisting of cascaded modular chopper cells with floating capacitors, the balance control of the DC-link capacitor voltage is essential for safe operation. This paper presents a leg-balancing control strategy to achieve DC-link voltage balance under all operating conditions. This strategy based on circulating current decoupling control focused on DC-link balancing between the upper and lower legs in each phase pair by considering the six legs as three independent phase-pairs. Experiments are implemented on a 100-V 3-kVA downscaled prototype. The experimental results show that the proposed leg-balancing control is both effective and practical.

Deadbeat Direct Active and Reactive Power Control of Three-phase PWM AC/DC Converters

  • Gandomkar, Ali;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1634-1641
    • /
    • 2018
  • This study focuses on a high-performance direct active and reactive power controller design that is successfully applicable to three-phase pulse width modulation (PWM) AC/DC converters used in renewable distributed energy generation systems. The proposed controller can overcome the sluggish transient dynamic response of conventional controllers to rapid power command changes. Desired active and reactive powers can be thoroughly obtained at the end of each PWM period through a deadbeat solution. The proposed controller achieves an exact nonlinear cross-coupling decoupling of system power without using a predefined switching table or bang/bang hysteresis control. A graphical and analytical analysis that naturally leads to a control voltage vector selection is provided to confirm the finding. The proposed control strategy is evaluated on a 3 kW PWM AC/DC converter in the simulation and experiment.

A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter (위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구)

  • Cho, Han-Jin;Lee, Won-Cheol;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.623-628
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

A Novel Method for Compensating Phase Voltage Based on Online Calculating Compensation Time

  • Wang, Mingyu;Wang, Dafang;Zhou, Chuanwei;Liang, Xiu;Dong, Guanglin
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.333-343
    • /
    • 2019
  • Dead time and the nonideal characteristics of components all lead to phase voltage distortions. In order to eliminate the harmful effects caused by distortion, numerous methods have been proposed. The efficacy of a method mainly depends on two factors, the compensation voltage amplitude and the phase current polarity. Theoretical derivations and experiments are given to explain that both of these key factors can be deduced from the compensation time, which is defined as the error time between the ideal phase voltage duration and the actual phase voltage duration in one Pulse Width Modulation (PWM) period. Based on this regularity, a novel method for compensating phase voltage has been proposed. A simple circuit is constructed to realize the real-time feedback of the phase voltage. Utilizing the actual phase voltage, the compensation time is calculated online. Then the compensation voltage is derived. Simulation and experimental results show the feasibility and effectivity of the proposed method. They also show that the error voltage is decreased and that the waveform is improved.

Analysis and Compensation of Current Measurement Error in Digitally Controlled AC Drives (디지털 제어 교류 전동기 구동시스템의 전류 측정 오차 해석 및 보상)

  • 송승호;최종우;설승기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.462-473
    • /
    • 1999
  • This paper addresses the current measurement issue of all digital field oriented control of ac motors. The p paper focuses on the effect of low-pass filter and also on the sampling of the fundamental component of the m motor current. The low-pass filter, which suppresses the switching noise of the motor current, introduces v variable phase delay according to the current ripple frequency. It is shown that the current sampling error c consists of the fundamental component and high frL'quency ripple components. In this paper, the dependency of t this current sampling e$\pi$or on the reference voltage vector is investigated analytically and a sampling technique i is proposed to minimize the error. The work is based on the three phase symmetry pulse width modulation l inverter driving an induction machine. With this technique, the bandwidth of current regulator can be extended t to the limit given by the switching frequency of the inverter and more precise torque regulation is possible.

  • PDF

Development of RSOD using optical phase modulator (광위상 변조기를 이용한 RSOD 개발)

  • Hwang, Dae-Seok;Lee, Young-Woo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.14-18
    • /
    • 2006
  • Optical interferometer is used for various optical measurement fields in optical metrology and biomedical measurements. In an optical interferometer, optical delay line has to change the optical path length of a reference arm to match with that of a sample in and it's speed was limited by reference arm movement speed. In this paper, we proposed an all-fibered RSODRapid Scanning-speed Optical Delay) without any mechanical movement, and we applied this system to optical interferometer. Experimental setup is consist of pulse laser source (center wavelength 1304nm, pulse width 30ps, repetition rate 10GHz), two phase modulators and dispersive shifted fiber. As experimental results, we obtain the maximum time delay of 11ps at 10MHz repetition rate, and it is easily tuneable the time delay by modulation frequency and modulation voltage.

Design of Sensorless BLDC Motor Driver Using Variable Voltage and Back-EMF Differential Line (가변 전압기와 역기전력 차동방식을 이용한 센서리스 BLDC 전동기 드라이버 설계)

  • Lee, Myoungseok;Kong, Kyoungchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.910-916
    • /
    • 2015
  • A sensorless motor control scheme with conventional back-Electro Motive Force (EMF) sensing based on zero crossing point (ZCP) detection has been widely used in various applications. However, there are several problems with the conventional method for effectively driving sensorless brushless motors. For example, a phase mismatch of 30 degrees occurs between the ZCP and commutation time. Additionally, most of the motor speed/current controls are achieved based on a pulse width modulation (PWM) method, which generates significant noise that distracts the back-EMF sensing. Due to the PWM switching, the ZCP is not deterministic, and thus the efficiency of the motor is reduced because the phase transition points become uncertain. Moreover, the motor driving performance is degraded at a low speed range due to the effect of PWM noise. To solve these problems, an improved back-EMF detection method based on a differential line method is proposed in this paper. In addition, the proposed sensorless BLDC driver addresses the problems by using a variable voltage driver generated from a buck converter. The variable voltage driver does not generate the PWM switching noise. Consequently, the proposed sensorless motor driver improves 1) the signal-to-noise ratio of back-EMF, 2) the operation range of a BLDC motor, and 3) the torque characteristics. The proposed sensorless motor driver is verified through simulations and experiments.