• Title/Summary/Keyword: Pulse chemical vapor infiltration

Search Result 5, Processing Time 0.016 seconds

Studies on the Mathematical Modelling of the Pulse-CVI for the Infiltration of Siliconcarbide from Methyltrichlorosilane (메틸삼염화규소로부터 탄화규소 침착의 Pulse-CVI에 대한 수치모사 연구)

  • Kim, In-Goo;Kim, Min-Ki;Chung, Gui-Yung
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.27-33
    • /
    • 2005
  • In this research, the mathematical modelling of the pulse-CVI (Chemical Vapor Infiltration) for the preparation of siliconcarbide/carbon composite. Each pulse consists with the gas injection time, the reaction time and the evacuation time. Effects of the reaction time and the evacuation time were studied. Additionally, the effects of the reactant concentration and the pressure were observed. The benefits of the pulse-CVI such as the uniform infiltration of siliconcarbide into the carbon preform and the short reaction time were certified.

Densification of Carbon/Carbon Composites by Pulse CVI with and without Residence (펄스화학기상침트법에 의한 탄소/탄소 복합재료의 치밀화에 있어서 가스유지시간 유무의 영향)

  • 이용근;류호진;박희동
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.935-941
    • /
    • 1996
  • Two-dimensional carbon/carbon preforms made of PAN-based carbon yarn and phenolic resin were densified with pyrolysis of propane by pulse chemical vapor infiltration where repeated the cycle of gas introduction residence and evacuation. Maximim density increment was 14% when infiltration temperature and time were 100$0^{\circ}C$ and 21.25 hrs respectively. The distribution of deposits of pyrocarbon by this process has been occurred uniformly in the bottom middle and top of carbon/carbon composite preform Pulse CVI with residence is most effective in increasing density and shortening infiltration time among isothermal CVI and pulse CVI with and without residence.

  • PDF

Studies on Effects of Deposition Parameters in Manufacturing of C/Sic composites by Pulse-CVI (C/SiC 복합재료 제조시 Pulse-CVI에서 증착변수의 영향 연구)

  • 김용탁;김영준;정귀영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.141-143
    • /
    • 2001
  • Ceramic fiber-reinforced composites have good mechanical properties in hardness and durability. In this study, we studied the formation of SiC/C composites from methyltrichlorosilane and hydrogen by the Pulse-chemical vapor infiltration(PCVI) to deposit silicon carbide around the changes of the amount of deposit. SiC/C composites formed at $950^{\circ}C$, 20torr, Pulse-times (5s/60s). SEM of the cross sectional area of semple showed deposited silicon carbide around fibers.

  • PDF

A Study on Ultrasonic Evaluation of Material Defects in Carbon/carbon Composites

  • Im, Kwang-Hee;David K. Hsu;Cha, Cheon-Seok;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1652-1663
    • /
    • 2002
  • It is desirable to perform nondestructive evaluation to assess material properties and part homogeneity because manufacturing of carbon/carbon (C/C) composites requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon composites for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon composite manufactured by chemical vapor infiltration (CVI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CVI process in order to increase the density of C/C composites. Ultrasonic velocity and attenuation depend on a density variation of materials. Low frequency through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity These results were compared with that obtained by dry-coupling ultrasonics. Pulse-echo C-scans was used to image near-surface material property anomalies such as the placement of spacers between disks during CVI. Also, optical micrograph had been examined on the surface of C/C composites using a destructive way.

A Study on the Ultrasonic Nondestructive Evaluation of Carbon/Carbon Composite Disks

  • Im, Kwang-Hee;Jeong, Hyun-Jo;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.320-330
    • /
    • 2000
  • It is desirable to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity because the manufacturing of carbon/carbon brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon brake disks (322mm ad, 135mm id) for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon disk manufactured by chemical vapor infiltration (CYI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CYI process. Low frequency (e.g., 1-5MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Images based on both the amplitude and the time-of-flight of the transmitted ultrasonic pulse showed significant variation in the radial direction. The radial variations in ultrasonic velocity and attenuation were attributed to a density variation caused by the more efficient densification of pitch impregnation near the id and od and by the less efficient densification away from the exposed edged of the disk. Ultrasonic velocities in the edges of the disk. Ultrasonic velocities in the thickness direction were also measured as a function of location using dry-coupling transducers ; the results were consistent with the densification behavior. However, velocities in the in-plane directions (circumferential and radial) seemed to be affected more by the relative contents of fabric and chopped fiber, and less by the void content.

  • PDF