• Title/Summary/Keyword: Pulse Wave Transit Time

Search Result 22, Processing Time 0.025 seconds

A Study of Ultrasound Rehabilitation Therapy: Physiological Effects by Change of Ultrasound Intensity (초음파 치료 시 초음파 세기 변화에 따른 생리적 효과 연구)

  • Kim, S.M.;Lee, M.P.;Choi, B.C.;Choi, S.H.;Bae, H.S.;Jung, H.S.;Park, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • Therapeutic ultrasound which is developed for rehabilitation therapy have already been used for healing joint contracture, synechia, acute and chronic inflammatory diseases. Medical devices for pain-relief and healing using therapeutic ultrasound are actively being developed. This study measured the change of PTT with the transmitted ultrasound through the human body to find out the increase of compliance of blood vessels. Measurement method of PTT in this study is employed as useful ways to acquire physiological information of patients in the clinical case in order to measure the change of mechanical characteristics of blood vessels. This study confirmed the PTT change of rehabilitation patients through the thermal effects of ultrasound by using PTT and also found that it is possible to increase PTT by adjusting the warm water and ultrasound. The increase of PTT means the decrease of the pulse wave velocity from the cardiovascular system to the peripheral arteries. The physiological effects occurred using the warm water and ultrasound.

Analysis of Change Rate of SBP and DBP Estimation Fusion Algorithm According to PTT Measurement change PPG Pulse Wave Analysis (PPG 맥파 분석의 PTT 측정변화에 따른 SBP, DBP 추정 융합 알고리즘 변화율 분석)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.35-40
    • /
    • 2020
  • Recently, devices such as smart watches capable of measuring small biosignals have been released. Body composition, blood pressure, heart rate, and oxygen saturation can be easily obtained. However, the part that is not trusted by the user is accuracy. These biosignals are sensitive to the external environment and have large fluctuations depending on the conditions inside the subject's body. Blood pressure measurements, in particular, still give different results, depending on how the conditions in the body are handled. Therefore, in this study, PPG was analyzed to measure PTT at two points of 80% and 100%, the highest in PTT measurement. The effect of the measured value on SBP and DBP was analyzed and a method was proposed to increase the accuracy. As a result of the study, the measured value of PTT at 80% of the peak PPG is more effective in estimating blood pressure of SBP and DBP than the value measured at 100%. In the regression analysis of the rate of change blood pressure estimation, the coefficient of determination of SBP (80%) was 0.6946, and DBP (100%) was 0.547.