• Title/Summary/Keyword: Pulse Wave Transit Time

Search Result 22, Processing Time 0.026 seconds

Continuous Blood Pressure Monitoring using Pulse Wave Transit Time

  • Jeong, Gu-Young;Yu, Kee-Ho;Kim, Nam-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.834-837
    • /
    • 2005
  • In this paper, we describe the method of non-invasive blood pressure measurement using pulse wave transit time(PWTT). PWTT is a new parameter involved with a vascular that can indicate the change of BP. PWTT is measured by continuous monitoring of ECG and pulse wave. No additional sensors or modules are required. In many cases, the change of PWTT correlates with the change of BP. We measure pulse wave using the photo plethysmograph(PPG) sensor in an earlobe and we measure ECG using the ECG monitoring device our made in the chest. The measurement device for detecting pulse wave consists of infrared LED for transmitted light illumination, pin photodiode as light detector, amplifier and filter. We composed 0.5Hz high pass, 60Hz notch and 10Hz low pass filter. ECG measurement device consists of multiplexer, amplifier, filter, micro-controller and RF module. After amplification and filtering, ECG signal and pulse wave is fed through micro-controller. We performed the initial work towards the development of ambulatory BP monitoring system using PWTT. An earlobe is suitable place to measure PPG signal without the restraint in daily work. From the results, we can know that the dependence of PWTT on BP is almost linear and it is possible to monitoring an individual BP continuously after the individual calibration.

  • PDF

A Study on Arterial Characterization by using Up-stroke Time of Photoplethysmogram (용적맥파 상승시간에 의한 혈관 특성화 연구)

  • Byeon, M.K.;Han, S.W.;Huh, W.
    • Journal of IKEEE
    • /
    • v.11 no.3
    • /
    • pp.108-116
    • /
    • 2007
  • This paper proposed an analyzable parameter and its analytic method to provide more accurate information than currently employed 4 channels system which uses pulse wave velocity (PWV) information of the volume pulse wave measured from 4 arterial channels for the characterization of arterial vessel. In order to verify the volume pulse waves on 4 sites were simultaneously acquired subjects aged from 12 to 81 years old. and the proposed parameters were extracted from time (UT) was then compared with blood pressure. Then, the regression analyses were done relationships among the proposed parameter and others, such as aging, pulse transit time pressure (BP). The followings are the results of linear regression analysis of the proposed parameter for total 50 normal subjects. We selected any two subjects (58 years and 27 years) and measured PPG (photoplethysmogram) and BP of before and after exercise. The coefficient of correlations between BP and UT observed was -0.928 for 50 years subject, and -0.922 for 20 years subject. For total 50 normal subjects, in case of correlation between the pulse transit time and BP, the result showed -0.170 on left side and -0.233 on right side, and the coefficient value of correlation between the pulse transit time and UT was -0.607 on left side and -0.510 on right side. UI is strongly correlated with the pulse transit time than BP. Hence, we believe that the proposed parameter is related with the index of arterial stiffness.

  • PDF

Analysis of Pulse Waveform and Pulse Wave Velocity of Carotid Artery and Radial Artery by Using Clip-type Pulsimeter Equipped with Permanent and Hall Device (영구자석과 홀소자가 구비된 맥진기를 이용한 경동맥과 요골동맥의 맥진파형과 맥파전달속도 분석)

  • Kim, Dong-Young;Lee, Sang-Suk;Hyeon, Seog-San;Rhee, Jin-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.5
    • /
    • pp.146-151
    • /
    • 2014
  • The pulse waveforms of a carotid artery in the neck and a radial artery in the hand wrist were individually measured by using clip-type pulsimeter equipped with a permanent and Hall device. The pulse transit time and the pulse wave velocity obtained through comparison of two pulse waveforms were analyzed each other. A value of the pulse wave velocity was about 8.5 m/s similar to one measured by a conservative method. This result suggests that the clip-type pulsimeter as the reproducible and reliable one oriental diagnostic medical device can be predicted to any atherosclerosis state in the cardiac circulatory system.

Estimation of Non- Invasive Blood Pressure Using Peripheral Plethysmograph (말초혈관 혈류 측정을 이용한 비관혈적 혈압 추정법에 대한 연구)

  • Jeong In-cheol;Shin Tae-min;Yoon Hyung-Ro
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.8
    • /
    • pp.504-509
    • /
    • 2005
  • This paper presents a new method for obtaining the noninvasive and unrestrained blood pressure readings noninvasively and unrestrainedly using based on reflected wave arrival time(RAT) in the volume of pulse. Since this new method employs only volume pulse, is more rapider and simpler than the method using pulse transit time(PTT) because it only employs the volume of pulse. Blood pressure, PTT and RAT were acquired from 15 healthy subjects. Each subjects were performed forty trials of each measurement. As a result of those trials, the mean error between oscillometric and RAT measurements for systolic blood pressure was $4.55\pm5.64mmHg$. This result showed quite equal with the mean error between oscillometric and PPT measurf:ments, $4.22\pm5.30mmHg$, However, it was not obtained a satisfactory result in the relativity of oscillometric to both RAT and PPT measurements for diastolic blood pressure because of personal difference. To conclude, the method of systolic blood pressure estimation noninvasively and unrestrainedly using by RAT may be used as the method by PTT. Nevertheless, additional studies would be necessary for the RAT/PTT estimation of diastolic blood Pressure measurement.

Respiratory Effort Monitoring Using Pulse Transit Time in Human (인체에서 맥파전달시간을 이용한 호흡노력 모니터링)

  • 정동근
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.485-489
    • /
    • 2002
  • In this study. respiratory efforts were monitored by the change of pulse transit time (PTT) which is related with the arterial pressure PTT is the time interval between the peak of R wave in ECG and the maximal slope point of photoplethysmogram(PPG). Biosignals, ECG and finger photoplethysmogram(PPG), were converted to digital data, and PTT was evaluated in personal computer with every heart beat. Results were presented as a graph using spline interpolation. The software was implemented in C$\^$++/ as a window-based application program. PTT was periodically changed according to airflow in resting respiration. In the resting respiration, PTT was changed according to the respiratory cycle. The amplitude of PTT fluctuation was increased by deep respiration, and increased by partial airway obstruction. These results suggest that PTT is responsible to respiratory effort which could be evaluated by the pattern of PTT change. And it is expected that PTT could be applied in the monitoring of respiratory effort by noninvasive methods, and is very useful method for the evaluation of respiratory distress.

Systolic blood pressure measurement algorithm with mmWave radar sensor

  • Shi, JingYao;Lee, KangYoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1209-1223
    • /
    • 2022
  • Blood pressure is one of the key physiological parameters for determining human health, and can prove whether human cardiovascular function is healthy or not. In general, what we call blood pressure refers to arterial blood pressure. Blood pressure fluctuates greatly and, due to the influence of various factors, even varies with each heartbeat. Therefore, achievement of continuous blood pressure measurement is particularly important for more accurate diagnosis. It is difficult to achieve long-term continuous blood pressure monitoring with traditional measurement methods due to the continuous wear of measuring instruments. On the other hand, radar technology is not easily affected by environmental factors and is capable of strong penetration. In this study, by using machine learning, tried to develop a linear blood pressure prediction model using data from a public database. The radar sensor evaluates the measured object, obtains the pulse waveform data, calculates the pulse transmission time, and obtains the blood pressure data through linear model regression analysis. Confirm its availability to facilitate follow-up research, such as integrating other sensors, collecting temperature, heartbeat, respiratory pulse and other data, and seeking medical treatment in time in case of abnormalities.

A Study on Arterial Characterization using Finger-Toe Index (FTI) (지첨-족지 지수에 의한 동맥 혈관 특성화 연구)

  • Byeon, M.K.;Han, S.W.;Huh, W.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.777-785
    • /
    • 2007
  • In this paper, Finger-Toe Index (FTI) is proposed as an analytic parameter for the characterization of arterial vessel. Different from the currently being employed pulse wave velocity (PWV) information of the volume pulse wave measured from 4 arterial channels, the proposed FTI uses the ratio of the shorter of the two up-stroke time of PPG from fingers ($UT_{finger}$) and that of PPG (Photoplethysmography) from toes ($UT_{toe}$). To verify the usefulness of the proposed method, Finger-Toe Indexes were derived from the volume pulse waves acquired from 50 people under examination aged from 12 to 81 years old, and they were then compared with blood pressure ankle-brachial index (ABI). It was successfully demonstrated that the arterial stiffness can be estimated with respect to age and FTI is more strongly correlated with the pulse transit time than ABI. From the regression analysis, we also found that FTI has significant correlation PWV for a quantitative index of arterial stiffness and provides more accurate information than ABI for the characterization of arterial vessel.

The Comparison of PTT and Systolic Blood Pressure in a hemorrhaged Rat (출혈을 일으킨 흰쥐에서의 PTT와 수축기 혈압 비교)

  • Shim, Young-Woo;Lee, Ju-Hyung;Yang, Dong-In;Kim, Deok-Won
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.138-140
    • /
    • 2009
  • Hemorrhage shock occupies high rate in trauma patient's mortality and blood pressure is the variance that judges early diagnosis and the effect of remedy. Systolic blood pressure is related to pulse transit time(PTT). PTT means the time that is required to flow from the heart to peripheral artery. PTT is influenced from the length, cross section and stiffness of the blood vessels. It is hard to evaluate the correlation between systolic blood pressure and PTT because they are variable in human body. In this paper, we evaluated the correlation between the systolic blood pressure and PTT in normal and hemorrhage states using standardized rat. PTT is defined as the time differences between the R peak and the peak of pulse wave. The analyzed time differences of ECG and blood pressure are analyzed every 5minutes for 30 seconds when there is before and after bleeding. Before bleeding, systolic blood pressure and PTT are steadily preserved but when the bleeding comes started, systolic blood pressure is declined. However PTT was increased and decreased. Under the circumstance that the standardized rat is controlled by age, the length of the blood vessels, and any disease, it shows that PTT measurement using systolic blood pressure of bleeding is impossible.

  • PDF

A Research of characteristics of left/right pulse wave and blood vessel using Korean medicine pulse diagnosis (맥진기를 이용한 좌우 맥파 및 혈관 특성 연구)

  • Kang, JinHo;Lee, Han-Byul;Kim, Ki-Wang;Kwon, Jung-Nam;Lee, Byung-Ryul
    • The Journal of Korean Medicine
    • /
    • v.35 no.3
    • /
    • pp.155-165
    • /
    • 2014
  • Objectives: The pulse diagnosis to identify the symptoms has been considered important in Korean medicine. The position and character of disease would be confirmed by pulse diagnosis of left and right radial artery. This paper is to analyze the characteristics and differences of left and right blood vessels. Methods: In this study, left and right radial artery and dorsalis pedis artery was measured and analyzed by using condenser typed pulse analyzer. Commercially available pulse analyzer was used to measure the radial artery. The pulse wave was measured in 20 laboratory healthy men and women. The blood vessel aging degree and index of augmentation of blood vessel was obtained from the measured pulse wave graph and the characteristics and differences of the left and right blood vessel was analyzed. Results: The significant difference of pulse transit time between the right handed and non-right handed was not found. The correlation of radial artery and dorsalis pedis artery had no significant difference. By obtaining the blood vessel aging index (AGI) and augmentation index (AI) of blood vessel at the left and right radial artery, the significant difference between right handed and non-right handed was not found. Conclusions: The result of this study would help to explain the characteristic of blood vessel with respect to the left and right handed. We suggest that research of pulse wave of the left and right blood vessel using pulse analyzer should be needed in further study.

The Development of Integrated Sensor System for Measuring Simultaneously ECG, PPG and PPW (심전도와 맥파 신호 검출을 위한 일체형 센서 시스템의 구현)

  • Jeon, Gye-Rok;Jung, Dong-Keun;Kim, Gi-Ryun;Shin, Bum-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.992-999
    • /
    • 2009
  • The pulse transit time(PTT), which is determined by measuring the electrocardiogram(ECG) and pulse wave, gives comprehensive information about the cardiovascular system. However, a little movement of body and/or inaccurate pressure applied to skin during the measurement of pulse wave leads to acquire incorrect results. To overcome such problem, we developed an integrated sensor system which makes it possible to measure ECG, pressure pulse wave(PPW) and photoplethysmograph(PPG) at the same time. Futhermore, we implemented a new metal electrode which enables to continuously measure ECG. We verified that both integrated sensor system and new electrode provide useful effect.