• Title/Summary/Keyword: Pulse Ni plating

Search Result 14, Processing Time 0.02 seconds

$CH_4N_2S$$C_{10}H_{13}NO_3S$ 첨가가 Ni 패턴 상의 구리도금 형상에 미치는 영향

  • Lee, Jin-Hyeong;Lee, Ju-Yeol;Kim, Man
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.155-155
    • /
    • 2009
  • The copper plating was deposited by pulse reverse current (PRC) method with additives. The all specimens were first immersted in 10% H2SO4 for 10 minutes, and then were rinsed with deionized water. The current densities of forward pulse were 400mA/$cm^2$, and those of reverse pulse were 1900mA/$cm^2$ and 100mA/$cm^2$. Results are compared for different additives for pulse plating conditions. When it added in Only CH4N2S (TU) or only C10H13NO3S (SVH), the effect of surface side growth of Cu was not different. But when it added in TU and SVH, surface side growth of Cu decreased. Polarization curves were measured from OCP to -0.7 V at a rate of 1mV/sec. Each specimen was observed under the PHENOM to see surface morphology.

  • PDF

Effect of Electroplating Parameters on Conductivity and Hardness of Ni-P Alloy (Ni-P 합금의 전기전도도와 경도에 대한 도금 조건의 영향)

  • Kim, Nam-Gil;Sun, Yong-Bin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.77-81
    • /
    • 2017
  • Pulse electroplating of Ni-P alloy was studied to fulfill the material requirement to the advanced vertical probe tip in wafer probe card. The major concerns are for the electrical conductivity and yield strength. Plating parameters such as current density, duty cycle and solution components were examined to obtain the nanocrystal structure and proper percentage of phosphorus, leading to how to control the nanocrystal grain growth and precipitation of $Ni_3P$ after heat treatment. Among the parameters, the amount of phosphorus acid was the main factor affecting on the grain size and sheet resistance, and the amount of 0.1 gram was appropriate. Since hardness in Ni-P alloy is increased by as-plated nanocrystal structure plus precipitation of $Ni_3P$, the concentration of P less than 15 at% was better choice for the grain coarsening without minus in hardness value. The following heat treatment made grain growth and dispersion of precipitates adjustable to meet the target limit of resistance of $100m{\Omega}$ and hardness number of over 1000Hv. The Ni-P alloy will be a candidate for the substitute of the conventional probe tip material.

Application of nanocomposite material to avoid injury by physical sports equipment

  • Weifeng Qin;Zhubo Xu
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.195-200
    • /
    • 2023
  • Safety in sports is important because if an athlete has an accident, he may not be able to lead an everyday life for the rest of his life. The safety of sports facilities is very effective in creating people's sports activities, with the benefits of staying away from physical injury, enjoying sports, and mental peace. Everyone has the right to participate in sports and recreation and to ensure that they want a safe environment. This study prepares a very good Nickel-Cobalt -Silicon carbide (Ni/Co-SiC) nanocomposite with convenient geometry on the leg press machine rod, employing the pulse electrodeposition technique to reduce the rod's wear and increase the durability of sports equipment and control sports damages. The results showed that the Ni/Co-SiC nanocomposite formed at 2 A/dm2 shows extraordinary microhardness. The wear speed for the Ni/Co-SiC nanocomposite created at 4 A/dm2 was 15 mg/min, showing superior wear resistance. Therefore, the Ni/Co-SiC nanocomposite can reduce sports equipment's wear and decrease sports injuries. Ni-Co/SiC nanocomposite layers with various scopes of silicon carbide nanoparticles via electrodeposition in a Ni-Co plating bath, including SiC nanoparticles to be co-deposited. The form and dimensions of Silicon carbide nanoparticles are watched and selected using Scanning Electron Microscopy (SEM).

The Fabrication of Nickel-Diamond Composite Coating by Electroplating Method (전기도금방법을 이용한 Ni-Diamond 복합도금층 제조에 대한 연구)

  • Moon, Yun-Sung;Lee, Jae-Ho;Oh, Tae-Sung;Byun, Ji-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • The codeposition behavior of submicron sized diamond with nickel from nickel electrolytes has been investigated. Electroplating of diamond dispersed nickel composites was carried out on a rotating disk electrode (RDE). The effects of current type and current density on the electrodeposited Ni-diamond composite coating were investigated. The effects of surfactants on the composite coating were also investigated. The hardness of coating was measured with varying electroplating conditions using Micro Vickers. As diamond was incorporated into the coating, the hardness of coating as well as the wear resistance was improved. The hardness of the coating was increased as much as 100% and the wear resistance was improved as much as 27%. The hardness of composite coating layer increased slightly at the diamond content of above 20 gpl.

  • PDF