• Title/Summary/Keyword: Pulse Load

Search Result 530, Processing Time 0.029 seconds

The 1.6[kW] Class Single Phase ZCS-PWM High Power Factor Boost Rectifier (1.6[kW]급 단상 ZCS-PWM HPF 승압형 정류기)

  • Mun, S.P.;Kim, S.I.;Yun, Y.T.;Kim, Y.M.;Lee, H.W.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1169-1171
    • /
    • 2003
  • This paper presents a 1.6[kW]class single phase high power factor(HPF) pulse width modulation(PWM) boost rectifier featuring soft commutation of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing insulated gate bipolar transistors(IGBT'S). The principle of operation, the theoretical analysis, a design example, and experimental results from laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current Total Harmonic Distortion(THD) equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF

Performance Test of High-Power Pulsed Klystron-Load (대출력 펄스 클라이스트론 부하의 성능시험)

  • Jang, S.D.;Son, Y.G.;Oh, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1756-1758
    • /
    • 2003
  • 포항 방사광 가속기의 선형가속기는 2.5GeV 전자빔 용 마이크로웨이브의 발생을 위하여 80MW 급 클라이스트론(klystron) 11대와 입사부 용 65MW 급 클라이스트론 1대를 사용한다. 80-MW 급 클라이스트론 부하를 구동하기 위하여 최대 펄스 정격출력 200 MW(400kv, 500A, 평탄도 4.4 ${\mu}s$)인 대출력 펄스 전원공급 장치(modulator)가 요구된다. 모듈레이터 시스템 용 PFN(pulse forming network) 커패시터의 충전용 입력전원으로써 최대 출력전압 50 kV, ${\pm}$ 0.5% 이내의 전압제어가 가능한 고전압 인버터 전원장치를 적용하여 클라이스트론 부하의 성능시험을 수행하였다. 클라이스트론의 RF 전력과 입력 빔의 특성을 정확히 측정하기 위하여 응답특성이 양호한 측정 장치와 정밀한 측정이 요구된다. 인버터 시스템의 적용에 따른 모듈레이터의 충전 특성을 파악하였으며, 방향성 결합기와 검파기를 설치하여 클라이스트론의 RF 출력을 측정하였다. 본 논문에서는 포항 방사광 가속기의 대출력 펄스 고주파원으로 사용되는 클라이스트론 부하의 성능시험 과정에서 수행하였던 시험장치 개선 및 특성 분석, 고전압(빔전압 320 kV) 및 RF 길들이기의 시험 결과에 관하여 고찰하고자 한다.

  • PDF

High Efficiency Active Clamp Forward Converter with Synchronous Switch Controlled ZVS Operation

  • Lee Sung-Sae;Choi Seong-Wook;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.131-138
    • /
    • 2006
  • An active clamp ZVS PWM forward converter using a secondary synchronous switch control is proposed in this paper. The proposed converter is suitable for low-voltage and high-current applications. The structure of the proposed converter is the same as a conventional active clamp forward converter. However, since it controls the secondary synchronous switch to build up the primary current during a very short period of time, the ZVS operation is easily achieved without any additional conduction losses of magnetizing current in the transformer and clamp circuit. Furthermore, there are no additional circuits required for the ZVS operation of power switches. Therefore, the proposed converter can achieve high efficiency with low EMI noise, resulting from soft switching without any additional conduction losses, and shows high power dens~ty, a result of high efficiency, and requires no additional components. The operational principle and design example are presented. Experimental results demonstrate that the proposed converter can achieve an excellent ZVS performance throughout all load conditions and demonstrates significant improvement in efficiency for the 100W (5V, 20A) prototype converter.

A Capacitor Charging Power Supply(CCPS) using Dead Time Control Circuit for Stable High Repetition (안정적 고반복을 위한 지연시간 제어회로가 적용된 커패시터 충전용 전원장치)

  • Lim, Tae Hyun;Hwang, Sun Mook;Kook, Jeong Hyeon;Yim, Dong Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.55-60
    • /
    • 2017
  • Capacitor Charging Power Supply(CCPS) is one of the most important components of a pulsed power system. The CCPS is widely used in source of lasers, accelerators and plasma generators. This paper presents design of a dead time control circuit and operation characteristics for stable high repetition rate of high voltage CCPS. The CCPS consists of battery, high voltage transformer and controller with a dead time control circuit. A dead time control circuit was simulated by PSpice. The performance test of the CCPS was carried out with a 7[nF] load capacitor at output voltage of 50[kV] and a pulse repetition frequency of 100[Hz]. As a result, we can verify that charging and discharging waveform is stable at 100[Hz]. The experiment results indicate that 3[ms] dead time made it possible for stable high repetition rate of 100[Hz]. This paper paves the way for designing an advanced CCPS which is more applicable outside experiments.

A New Random SPWM Technique for AC-AC Converter-Based WECS

  • Singh, Navdeep;Agarwal, Vineeta
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.939-950
    • /
    • 2015
  • A single-stage AC-AC converter has been designed for a wind energy conversion system (WECS) that eliminates multistage operation and DC-link filter elements, thus resolving size, weight, and reliability issues. A simple switching strategy is used to control the switches that changes the variable-frequency AC output of an electrical generator to a constant-frequency supply to feed into a distributed electrical load/grid. In addition, a modified random sinusoidal pulse width modulation (RSPWM) technique has been developed for the designed converter to make the overall system more efficient by increasing generating power capacity and reducing the effects of inter-harmonics and sub-harmonics generated in the WECS. The technique uses carrier and reference waves of variable switching frequency to calculate the firing angles of the switches of the converter so that the three-phase output voltage of the converter is very close to a sine wave with reduced THD. A comparison of the performance of the proposed RSPWM technique with the conventional SPWM demonstrated that the power generated by a turbine in the proposed approximately increased by 5% to 10% and THD reduces by 40% both in voltage and current with respect to conventional SPWM.

Switching Voltage Modeling and PWM Control in Multilevel Neutral-Point-Clamped Inverter under DC Voltage Imbalance

  • Nguyen, Nho-Van;Nguyen, Tam-Khanh Tu;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.504-517
    • /
    • 2015
  • This paper presents a novel switching voltage model and an offset-based pulse width modulation (PWM) scheme for multilevel inverters with unbalanced DC sources. The switching voltage model under a DC voltage imbalance will be formulated in general form for multilevel neutral-point-clamped topologies. Analysis of the reference switching voltages from active and non-active switching voltage components in abc coordinates can enable voltage implementation for an unbalanced DC-source condition. Offset voltage is introduced as an indispensable variable in the switching voltage model for multilevel voltage-source inverters. The PWM performance is controlled through the design of two offset components in a subsequence. One main offset may refer to the common mode voltage, and the other offset restricts its effect on the quality of PWM control in related DC levels. The PWM quality can be improved as the switching loss is reduced in a discontinuous PWM mode by setting the local offset, which is related to the load currents. The validity of the proposed algorithm is verified by experimental results.

Closed-loop Identification and Controller Design for a Converter (컨버터의 폐루프 식별 및 제어기 설계)

  • Yun, Kyong-Han;Lim, Yeon-Soo;Jin, Li-Hua;Kim, Jae-Jin;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1632-1633
    • /
    • 2007
  • This paper presents a new method of designing digital controller based on closed-loop identification of a pulse width modulation (PWM) converter system. We consider the control system structure which is composed of both current control loop and voltage control loop. The current controller can be designed independently of voltage loop. Whereas voltage controller can not do easily due to the PWM switching component which is nonlinear in nature. Furthermore, the control objective of inner loop is to track the sine wave of 60 Hz, but the outer loop shall maintain the constant DC voltage irrespective to load change. To systematically design outer loop controller, we propose a method finding linear approximate model of the nonlinear inner loop part including current controller by closed loop identification. Based on the identified model, we show that a simple digital voltage controller can be directly designed and it has good performance.

  • PDF

High-efficiency fuel-cell power inverter with soft-switching resonant technique (Soft-switching resonant technique을 적용한 고효율 PEMFC inverter)

  • Han, K.H.;Cho, Y.R.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.326-328
    • /
    • 2005
  • In order to reduce the capital and overall operating cost of a fuel-cell system, a high-efficiency fuel-cell power inverter with a simple framework is required. The high-order two-inductance two-capacitance (LLCC) resonant technique is adopted in this study to implement a low-frequency 60-Hz sine wave voltage inverter utilized in the proton exchange membrane fuel-cell (PEMFC) system. The methodology for inverting dc voltage into low-frequency ac boltage is usually generated by the pulse-width-modulation (PWM) technique. However, the PWM-type inverter output has high-frequency harmonic components. Although an adequately designed filter could be utilized to overcome this problem, there are still some undesirable effects introduced by the high-frequency switching loss, electromagnetic-interference, harmonic current, and load variation. A novel power inverter via the LLCC resonant technique is designed for inverting dc voltage into 60-Hz ac sine wave voltage in the PEMFC system. This circuit scheme has the merits of low harmonic components, soft switching, high efficiency, and simplified implementation. The effectiveness of the proposed resonant inverter used for the PEMFC system is verified by numerical simulations and experimental results.

  • PDF

Analysis of a Buck DC-DC Converter for Smart Electronic Applications (스마트기기용 강압형 DC-DC 변환기 특성해석)

  • Kang, Bo-gyeong;Na, Jae-Hun;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.373-379
    • /
    • 2019
  • Nowadays, the IoT portable electronic devices have become more useful and diverse, so they require various supply voltage levels to operate. This paper presents a DC-DC buck converter with pulse width modulation (PWM) for portable electronic devices. The proposed step-down DC-DC converter consists of passive elements such as capacitors, inductors, and resistors and an integrated chip (IC) for signal control to reduce power consumption and improves ripple voltage with the resolution. The proposed DC-DC converter is simulated and analyzed in PSPICE circuit design platform, and implemented on the prototype PCB board with a Texas Instruments LM5165 IC. The proposed buck converter is showed 92.6% of peak efficiency including a load current range of 4-10 mA, 3.29 mV of the voltage ripple at 5 V output voltage for the supply voltage 12 V. Measured and Simulated power efficiency are made good agreement with each other.

Finite Element Analyses on the Dynamic Behavior of Piezoelectric ZnO Nanowires and Their Piezoelectric Device Application Potentials (압전 산화아연 나노와이어의 동적거동 및 압전소자 응용성)

  • Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.43-53
    • /
    • 2021
  • Dynamic behavior of piezoelectric ZnO nanowires is investigated using finite element analyses (FEA) on FE models constructed based on previous experimental observations in which nanowires having aspect ratios of 1:2. 1:31, and 1:57 are obtained during a hydrothermal process. Modal analyses predict that nanowires will vibrate in lateral bending, uniaxial elongation/contraction, and twisting (torsion), respectively, for the three ratios. The natural frequency for each vibration mode varies depending on the aspect ratio, while the frequencies are in a range of 7.233 MHz to 3.393 GHz. Subsequent transient response analysis predicts that the nanowires will behave quasi-statically within the load frequency range below 10 MHz, implying that the ZnO nanowires have application potentials as structural members of electromechanical systems including nano piezoelectric generators and piezoelectric dynamic strain sensors. When an electric pulse signal is simulated, it is predicted that the nanowires will deform in accordance with the electric signal. Once the electric signal is removed, the nanowires exhibit a specific resonance-like vibration, with the frequency synchronized to the signal frequency. These predictions indicate that the nanowires have additional application potential as piezoelectric actuators and resonators.