• 제목/요약/키워드: Pulse Load

Search Result 530, Processing Time 0.031 seconds

Design of X-band 40 W Pulse-Driven GaN HEMT Power Amplifier Using Load-Pull Measurement with Pre-matched Fixture (사전-정합 로드-풀 측정을 통한 X-대역 40 W급 펄스 구동 GaN HEMT 전력증폭기 설계)

  • Jeong, Hae-Chang;Oh, Hyun-Seok;Yeom, Kyung-Whan;Jin, Hyeong-Seok;Park, Jong-Sul;Jang, Ho-Ki;Kim, Bo-Kyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1034-1046
    • /
    • 2011
  • In this paper, a design and fabrication of 40 W power amplifier for the X-band using load-pull measurement of GaN HEMT chip are presented. The adopted active device for power amplifier is GaN HEMT chip of TriQuint company, which is recently released. Pre-matched fixtures are designed in test jig, because the impedance range of load-pull tuner is limited at measuring frequency. Essentially required 2-port S-parameters of the fixtures for extraction optimal input and output impedances is obtained by the presented newly method. The method is verified in comparison of the extracted optimal impedances with data sheet. The impedance matching circuit for power amplifier is designed based on EM co-simulation using the optimal impedances. The fabricated power amplifier with 15${\times}$17.8 $mm^2$ shows the efficiency above 35 %, the power gain of 8.7~8.3 dB and the output power of 46.7~46.3 dBm at 9~9.5 GHz with pulsed-driving width of 10 usec and duty of 10 %.

A Study on Operation Method of Protection Device for LVDC Distribution Feeder in Light Rail System (경전철용 LVDC 배전계통의 보호기기 운용 방안에 관한 연구)

  • Kang, Min-Kwan;Choi, Sung Sik;Lee, Hu-Dong;Kim, Gi-Yung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.25-34
    • /
    • 2019
  • Recently, when a fault occurs at a long-distance point in a LVDC (low voltage direct current) distribution feeder in a light rail system, the magnitude of the current can decrease to less than that of the load current of a light rail system. Therefore, proper protection coordination method to distinguish a fault current from a load current is required. To overcome these problems, this paper proposes an optimal algorithm of protection devices for a LVDC distribution feeder in a light rail system. In other words, based on the characteristics of the fault current for ground resistance and fault location, this paper proposes an optimal operation algorithm of a selective relay to properly identify the fault current compared to the load current in a light rail system. In addition, this paper modelled the distribution system including AC/DC converter using a PSCAD/EMTDC S/W and from the simulation results for a real light rail system, the proposed algorithm was found to be a useful and practical tool to correctly identify the fault current and load current.

Electromagnetic Retarder's Power Recovery Device and Voltage Control (전자기형 리타더의 전력회수장치 및 전압제어)

  • Jung, Sung-Chul;Yoon, In-Sik;Ko, Jong-Sun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.396-403
    • /
    • 2016
  • Usually, large-sized buses and trucks have a very high load. In addition, frequent braking during downhill or long-distance driving, causes the conventional method using the brake friction to have a problem in safety because of brake fade and brake burst phenomenon. Auxiliary brakes dividing the braking load is essential. Hence, environment-friendly auxiliary brakes, such as contactless brake rather than the engine auxiliary brake system are needed. A study aimed at improving the energy efficiency by recharging electric energy with changing mechanical to electrical energy that occurs when braking is actively in progress. In this paper, the voltage control method is utilized to recover the electric energy generated in the electromagnetic retarder instead of the eddy current. To regenerate the braking energy into the electrical energy, the resonant L-C circuit is configured in the retarder. The voltage generated in the retarder is simply modeled as a transformer. However, retarder voltage control in this paper is simulated by modeling the induction generator because this induction generator modeling is more practical than transformer modeling. The changes in the voltage of the resonance circuit, which depends on the switch pulse duration of the control device, were analyzed. A PI controller algorithm to control this voltage is proposed. The feasibility of modeling retarder and voltage controller are shown by using MATLAB Simulink in this paper.

Duplex Pulse Frequency Modulation Mode Controlled Series Resonant High Voltage Converter for X-Ray Power Generator

  • Chu Enhui;Ogura Koki;Moisseev Serguei;Okuno Atsushi;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.295-300
    • /
    • 2001
  • A variety of high voltage DC power supplies employing the high frequency inverter are difficult to achieve soft switching considering a quick response and no overshoot response under the wide load variation ranges which are used in medical-use x-ray high voltage generator from 20kV to 150kV in the output voltage and from 0.5mA to 1250mA, respectively. The authors develops soft switching high voltage DC power supply designed for x-ray power generator applications, which uses series resonant inverter circuit topology with a multistage voltage multiplier instead of a conventional high voltage diode rectifier connected to the second-side of a high-voltage transformer with a large turn ratio. A constant on-time dual mode frequency control scheme operating under a principle of zero-current soft switching commutation is described. Introducing the multistage voltage multiplier, the secondary transformer turn-numbers and stray capacitance of high-voltage transformer is effective to be greatly reduced. It is proved that the proposed high-voltage converter topology with dual mode frequency modulation mode control scheme is able to be the transient response and steady-state performance in high-voltage x-ray tube load. The effectiveness of this high voltage converter is evaluated and discussed on the basis of simulation analysis and observed data in experiment.

  • PDF

Design and Operational Charcteristics of 150MW Pulse Modulator (150MW 펄스 MODULATOR의 설계 및 동작특성)

  • Park, S.S.;Oh, J.S.;Lee, K.T.;Kim, S.H.;Son, Y.K.;Choi, K.;Chang, S.D.;Park, S.W.;Nam, S.H.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.928-930
    • /
    • 1992
  • The design beam energy of PLS(Pohang Accelerator Laboratory) Linac is 2Gev. The linac employs total 11 units of modulators and klystrons. The maximum peak output powers of the modulators are 200MW (400kV, 500A, 4.4$\mu$S flat-top, 800$\Omega$ load) to drive the klystrons which have the peak microwave power of 80MW. Prior to the development of the 200MW modulators, a prototype 150MW modulator has been constructed and tested. We have achieved output pulses of 350kV, 420A and 3.5$\mu$S flat-top with 840$\Omega$ water load. In this article, the test results and computer simulations of charging, De-Q'ing, and discharging are presented.

  • PDF

The Experimental Consideration of ZVT-PWM AC-DC Converter using Active Auxiliary Resonant Snubber (액티브 보조 공진 스너버를 이용한 ZVT-PWM AC-DC 컨버터의 실험적 고찰)

  • 서기영;문상필;김주용;박진민
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.75-82
    • /
    • 2004
  • Zero Voltage Transition Pulse Width Modulation (ZVT-PWM) converter with active snubber circuit was proposed on this paper. The converter that has been proposed snubber circuit can be operated at the condition of light load range, and this converter is turned on and off near by Zero Voltage Switching (ZVS) or Zero Current Switching (ZCS). If the stress of voltage and current are not occurred at the main switch and main diode, we subjected the allowed level of voltage and current on the auxiliary switch and auxiliary diodes. By proposed 750[W], 80[KHz] PWM boost converter to apply soft switching on the power of total output, the loss of main switch to compare with hard switching was reduced about 27[%], and the loss of total circuit was reduced about 36[%]. The total efficiency was increased about 6[%] to compare with general converter.

Current Unbalance Improved Half-bridge LLC Resonant Converter using the Two Transformers (두 개의 변압기를 이용한 전류불균형 개선 하프브리지 LLC 공진형 컨버터)

  • Yoo, Doo-Hee;Jeong, Gang-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.497-507
    • /
    • 2010
  • This paper presents current unbalance improved half-bridge LLC resonant converter using the two transformers with different leakage inductances. The proposed converter resonates with the leakage inductance and magnetizing inductance of the transformer and the resonant capacitance. The converter operates in a wide load range and satisfies the zero voltage switching even under the light load. The series-parallel connected two transformers act as the transformers or the resonant inductances according to the operational modes, and the separate output filter inductance in the transformer secondary is not needed using the leakage inductance. The current unbalance of the secondary diode rectifier is improved using the different leakage inductances of the two transformers and the asymmetrical pulse-width modulation (PWM). In this paper, the operational principle of the converter is explained by the modes, and the design example for the prototype is also shown. To validate the performance of the converter, the prototype is implemented as the designed circuit parameters and the good performance of the proposed converter is shown through the experimental results

An Integrated Circuit design for Power Factor Correction (역률 개선 제어용 집적회로의 설계)

  • Lee, Jun-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.219-225
    • /
    • 2014
  • This paper describes an IC for Power Factor Correction. It can use electrical appliances which convert power from AC to DC. The power factor can be influenced not only phase difference of voltage and current but also sudden change of current waveform. This circuit enables current wave supplied to load by close to sinusoidal and minimum phase difference of voltage and current waveform. A self oscillated 10[kHz]~100[kHz] pulse signal converted to PWM waveform and it chops rectified full wave AC power which flows to load device. The multiplier and zero current detector circuit, UVLO, OVP, BGR circuits were designed. This IC has been designed and whole chip simulation use 0.5[um] double poly, double metal 20[V] CMOS process.

Strain Analysis of Longitudinal Reinforcing Steels of RC Bridge Piers Under Shaking Test (진동대 실험에 의한 RC교각의 주철근 변형률 분석)

  • Hong, Hyun-Ki;Yang, Dong-Wook;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.93-96
    • /
    • 2008
  • The near fault ground motion(NFGM) is characterized by a single long period velocity pulse of large magnitude. NFGM's have been observed in recent strong earthquakes, Turkey Izmit (1999), Japan Kobe(1995), Northridge(1994), etc. These strong earthquakes have caused considerable damage to infrastructures because the epicenter was close to the urban area, called as NFGM. Extensive research for the far fault ground motion(FFGM) have been carried out in strong seismic region, but limited research have been done for NFGM in low or moderate seismic regions because of very few records. The purpose of this study is to investigate and analyze the effect of near-fault ground motions on RC bridge piers without lap-spliced longitudinal reinforcing steels. The seismic performance of two RC bridge piers under near-fault ground motions was investigated on the shake table. In addition, Two of four identical RC bridge piers were tested under a quasi-static load, and the others were under a pseudo-dynamic load. The respectively two RC bridge pier is comparatively subjected to Pseudo-dynamic loadings and Quasi-Static loadings. This paper indicated that more gives bigger ultimate strain of longitudinal steels to be fractured at bigger PGA motion.

  • PDF

The KSTAR Vacuum Pumping and Fueling System Upgrade

  • Lim, J.Y.;Chung, K.H.;Cho, S.Y.;Lee, S.K.;Shin, Y.H.;Hong, S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.39-39
    • /
    • 1999
  • The KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak is a nuclear fusion experimental device for a long pulse/steady-state plasma operation, adopting fully superconducting magnets. In accordance with completion of the basic design of the torus vacuum vessel and the enclosing cryostat, the vacuum pumping and gas fueling basic design has been developed to fulfil the physics requirements. The ultra-high vacuum pumping and sophisticated gas fueling system of the machine is essential to achieve such roles for optimized plasma performance and operation. Recently the vacuum exhaust system using dedicated pumping ports for the vacuum vessel and cryostat has been modified to meet more reliable and successful performance of the KSTAR[Fig. 1].In order to achieve the required base pressure of 5 x 10-9 torr, the total impurity load to the vessel internal is limited to ~5 x 10-5 torr-1/x, while the cryostat base pressure is kept as ~5 x 105 torr to mitigate the thermal load applied to the superconducting magnets. Each KSTAR fueling system will be separately capable of fueling gas at a rate of 50 torr-1/x, consistent with the given pumping throughput. In order to initiate a plasma discharge in KSTAR, the vacuum vessel is filled to a gas pressure of few 10-6 to few 10-4 torr, and additional gas injection is required to maintain and increase the plasma density during the course of the discharge period.

  • PDF