• Title/Summary/Keyword: Pulse Generators

Search Result 35, Processing Time 0.025 seconds

The Study on the Electrical Characteristics of the Pulse Generator adopted Cascading Technique

  • Joung, Jong-Han;Kim, Moon-Hwan
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.112-116
    • /
    • 2004
  • The pulsed power systems have been widely used many other countries and their new applications have been developed by many researchers, such as E/P(Electrostatic Precipitator) to remove the industrial dust, DeNOx/DeSOx power systems, ozone generators and power sources of the laser beam, etc. In this paper, we studied the cascading technique as a new technology consisted of two pulse transformers and obtained their experimental data and results. To obtain the high pulsed voltage adopted cascading technique, we designed our compact pulse generator and tested by adjusting the value of the load resistors to obtain high pulsed voltage with steep rising time and duration time. We explained their experimental results that obtained by adopting cascading technique. Also, we compared theoretical value with measured value obtained by using the cascading method.

The Study on Arc Suppression of Line-to-Line Electrodes in Air and Removal of the Metaloxide (선대 선 전극방식의 대기압 아크억제 대책 및 Metaloxide 제거에 관한 연구)

  • 정종한;김문환
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.264-267
    • /
    • 2004
  • Recently the pulsed power systems have been widely used in many fields such as E/P(Electrostatic Precipitator), DeNOx/DeSOx power systems, ozone generators and power sources of the laser beam. In this paper, we studied various electrical characteristics for arc suppression of line-to-line electrodes in air and removal of the metaloxide using our pulsed power system. To obtain high efficiency of the pulsed power system, we repeatedly experimented and tested their characteristics. by adjusting electrode length of the load. As a result, when the value of the electrode length and pulse repetition rate were changed at the load, the value of the arc voltage changed at the electrode load. In conclusion, we controlled arc voltage of the load by ,changing electrode length and pulse repetition rate. Also. we stydied removal area of the metaloxide using area discharge according to pulse repetition rate.

Design of an Integrated High Voltage Pulse Generation circuit for Driving Piezoelectric Printer Heads (피에조일렉트릭 프린터 헤드 구동을 위한 집적화된 고전압 펄스 발생 회로의 설계)

  • Lee, Kyoung-Rok;Kim, Jong-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.80-86
    • /
    • 2011
  • This paper presents an integrated variable amplitude high voltage pulse generation circuit with low power and small size for driving industrial piezoelectric printer heads. To solve the problems of large size and power overhead of conventional pulse generators that usually assembled with multiple high-cost discrete ICs on a PCB board, we have designed a new integrated circuit (IC) chip. Since all the functions are integrated on to a single-chip it can achieve low cost and control the high-voltage output pulse with variable amplitudes as well. It can also digitally control the rising and falling times of an output high voltage pulse by using programmable RC time control of the output buffer. The proposed circuit has been designed and simulatedd in a 180[nm] Bipolar-CMOS-DMOS (BCD) technology using HSPICE and Cadence Virtuoso Tools. The proposed single-chip pulse generation circuit is suitable for use in industrial printer heads requiring a variable high voltage driving capability.

Study of PD Location in Generators by PD Pulses Propagation

  • Cheng, Yang-Chun;Li, Cheng-Rong;Wang, Wei
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.252-256
    • /
    • 2006
  • When a partial discharge takes place at the stator of a generator, the electrical pulse will propagate along the stator bars and the capacitor chains formed by the end part of the stator winds. On the first path, the pulse propagates as a travel wave at slow speed. On the second path, the pulse propagates at quick speed. Based on the data of the experiments on a real 50 MW steam generator, the author has found the pulses can propagate by magnetic field of the stator winding. It was studied that how to locating the partial discharge by signals coming from the different paths, including the features of signals on the two paths at time domain and frequency domain, the measurement frequency rang of the signals, the blind area, the advantage and disadvantage of this method.

Sine-wave and Trigger Pulse Generator for SS-OCT (SS-OCT용 정현파 및 트리거 펄스 발생기)

  • Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.398-403
    • /
    • 2015
  • In this paper, the sine-wave and trigger pulse generator with capability of frequency high-resolution and time-variable trigger edge has implemented. It fulfills well the requirements for SS-OCT with frequency resolution of 1 Hz, frequency stability of ${\leq}{\pm}0.03Hz$ and time-variable trigger edge. Through its performance test applied to the wavelength swept laser, 90 nm, sweeping range and 10mW average optical power were obtained. This showes that the realized generator can replace the commercial high cost and high performance signal generators employed by current SS-OCT systems.

Induction Voltage Adder for High Power Pulse Generator (유도전압합성기를 이용한 고전압 펄스발생기 설계)

  • Yang, Jong-Won;Shin, Jin-Woo;Ryu, Han-Young;Heo, Hoon;Lee, Woo-Sang;Kim, Chang-Gu;Nam, Sang Hoon;So, Joon-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.703-711
    • /
    • 2013
  • In this paper, we have proposed high power generator with Induction Voltage Adder of three cells. IVA which has n cells can generate n-th times high power pulse, is a more stable system than Marx generator in the view of breakdown. We applied amorphous metal magnetic cores as an energy storing material for IVA rather than ferrite cores because of their higher magnetic flux swing to make it more compact system and the loss of it was also considered in the design. For driving the IVA, we design Blumlein pulse generators which are filled with pure water for high dielectric constant and high breakdown field strength, and triggered by single Marx generator. We have presented the PSPICE simulation and its test result.

HIPIMS Arc-Free Reactive Deposition of Non-conductive Films Using the Applied Material ENDURA 200 mm Cluster Tool

  • Chistyakov, Roman
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.96-97
    • /
    • 2012
  • In nitride and oxide film deposition, sputtered metals react with nitrogen or oxygen gas in a vacuum chamber to form metal nitride or oxide films on a substrate. The physical properties of sputtered films (metals, oxides, and nitrides) are strongly influenced by magnetron plasma density during the deposition process. Typical target power densities on the magnetron during the deposition process are ~ (5-30) W/cm2, which gives a relatively low plasma density. The main challenge in reactive sputtering is the ability to generate a stable, arc free discharge at high plasma densities. Arcs occur due to formation of an insulating layer on the target surface caused by the re-deposition effect. One current method of generating an arc free discharge is to use the commercially available Pinnacle Plus+ Pulsed DC plasma generator manufactured by Advanced Energy Inc. This plasma generator uses a positive voltage pulse between negative pulses to attract electrons and discharge the target surface, thus preventing arc formation. However, this method can only generate low density plasma and therefore cannot allow full control of film properties. Also, after long runs ~ (1-3) hours, depends on duty cycle the stability of the reactive process is reduced due to increased probability of arc formation. Between 1995 and 1999, a new way of magnetron sputtering called HIPIMS (highly ionized pulse impulse magnetron sputtering) was developed. The main idea of this approach is to apply short ${\sim}(50-100){\mu}s$ high power pulses with a target power densities during the pulse between ~ (1-3) kW/cm2. These high power pulses generate high-density magnetron plasma that can significantly improve and control film properties. From the beginning, HIPIMS method has been applied to reactive sputtering processes for deposition of conductive and nonconductive films. However, commercially available HIPIMS plasma generators have not been able to create a stable, arc-free discharge in most reactive magnetron sputtering processes. HIPIMS plasma generators have been successfully used in reactive sputtering of nitrides for hard coating applications and for Al2O3 films. But until now there has been no HIPIMS data presented on reactive sputtering in cluster tools for semiconductors and MEMs applications. In this presentation, a new method of generating an arc free discharge for reactive HIPIMS using the new Cyprium plasma generator from Zpulser LLC will be introduced. Data (or evidence) will be presented showing that arc formation in reactive HIPIMS can be controlled without applying a positive voltage pulse between high power pulses. Arc-free reactive HIPIMS processes for sputtering AlN, TiO2, TiN and Si3N4 on the Applied Materials ENDURA 200 mm cluster tool will be presented. A direct comparison of the properties of films sputtered with the Advanced Energy Pinnacle Plus + plasma generator and the Zpulser Cyprium plasma generator will be presented.

  • PDF

Low Cost Signal Generator with Frequency High-Resolution for SS-OCT (SS-OCT용 고 주파수분해능 저비용 정현파 발생기)

  • Lee, Juchan;Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.84-88
    • /
    • 2013
  • In this paper, the low price signal generator with capability of frequency high-resolution and variable sync pulse has implemented. It fulfils well the requirements for SS-OCT of the frequency resolution less than 1Hz, frequency stability of ${\leq}{\pm}0.5Hz$/10 min and variable sync pulse output timing. Through its performance test applied to wavelength swept laser, 120 nm sweeping range and 10 mW average optical power were obtained. This shows that the realized sine-wave generator can replace the commercial high cost and high performance signal generators employed by current SS-OCT systems.

Development of DDL(Digital Delay Line) Module Using Interleave Method Based on Pulse Recognition and Delay Gap Detection (펄스 인식 및 지연 간격 검출을 통한 인터리브 방식의 디지털 시간 지연 모듈 개발)

  • Han, Il-Tak
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.577-583
    • /
    • 2011
  • Radar performance test is one of the major steps for radar system design. However, it is restricted by time and cost when radar performance tests are performed with opportunity targets. So various simulated target generators are developed and used to evaluate radar performance. To simulate the target's range, most of simulated target generators are developed with optical line or DRFM(Digital RF Memory) technique but there are many restrictions such as limit of range imitation and test scenario because of their original usage. In this paper, DDL(Digital Delay Line) module for development of simulated target generator is designed with precise range simulation and easily embodiment feature. And pulse recognition and delay gap detection technique are used to simulate the time delay without distortions. Developed DDL module performances are verified through their performance tests and test results are described in this paper.

Output Characteristics of Parallel or Serially Connected Helical Magneto-Cumulative Generators (병렬 또는 직렬로 결합한 나선형 자장압축발전기의 출력특성 분석)

  • Kuk Jeong-Hyeon;Lee Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.647-657
    • /
    • 2004
  • Helical magneto-cumulative generator(HMCG)s are very useful devices in suppling pulsed high current to inductance loads. To apply fast high voltage pulses to high impedance loads, high current outputs of HMCGs are required to be conditioned to higher voltages by using various pulse components such as opening/closing switches and pulse transformer. In this paper, stepping with the trends of requirements for ever-increasing energy in pulsed power applications coupling methods is investigated to obtain higher output energy by connecting several HMCGs in series or parallel way. The coil dimension of HMCGs used in series or parallel connections was 50 mm in diameter and 150 mm in length. The coil was fabricated by using enamel-coated copper wire of 1 mm in diameter. The highest energy amplification ratio and peak voltage of load were achieved from the serially connected four-barrel HMCG system. They were 68 and 34 kV, respectively, when the initial energy of 0.36 kJ was supplied into that system with the load of 0.4 μH. Within the tested range of inductance ratio, energy amplification ratio was found to be highly dependent on the inductance ratio of serial- and parallel-connected HMCG systems to load, which to be optimal around 500 was turned out. The experimental results showed that the output energy and voltage of load are controlled by connecting HMCGs in series or parallel.