• Title/Summary/Keyword: Pulsation pressure

Search Result 230, Processing Time 0.024 seconds

Impedance Characteristics of an Expansion-Resonator Type Pulsation Attenuator(Attenuation on Flow and Pressure Ripple form a Hydraulic Piston Pump) (팽창 공명기형 맥동 감쇠기의 임피던스 특성(유압용 피스톤 펌프의 유량.압력맥동 감쇠))

  • 이상기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.88-95
    • /
    • 2000
  • In this paper, an expansion-resonator type pulsation attenuator is proposed to absorb and attenuate flow an pressure ripple with high frequencies generated from hydraulic control systems. The basic principle of a pulsation attenuator proposed here is applied to propagation, reflection, absorption of pressure waves at the cross section of discontinuity and resonance in the pipeline. It has advantage of the compact size and high degree fo freedom for installation in hydraulic systems. The design scheme based on distributed parameter pipeline system with dissipative viscous compressible model is developed. To investigate the reduction of flow and pressure ripple with high frequencies produced by swash plate type axial piston pump, two kinds of attenuators are manufactured. It is experimently confirmed that the spectral intensity of flow and pressure ripple with high frequencies from the pump are reduced up to about 20$^{\circ}$~30dB by using attenuators proposed here. The calculated results were in good agreement with the measured values. From there sults of this study, it is shown that an expansion-resonator type pulsation attenuator is effective in a wide frequency ranges to attenuate the flow and pressure ripple from hydraulic components.

  • PDF

Effects of Gas Pulsation in Piping Lines on Compressor Performance in a Double-Acting Reciprocating Compressor (복동식 왕복동 압축기의 연결 배관계 가스 맥동이 압축기 성능에 미치는 영향)

  • 김현진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.448-456
    • /
    • 2000
  • For piping line systems associated with a double-acting reciprocating compressor, an analytical study has been made on the gas pulsation in piping lines and its effects on the compressor performance. The transfer matrix which relates mass flow rate to the gas pulsation downstream of the compressor valve can be obtained by an acoustic model for piping line systems which include snubber and after-cooler with the aid of four pole theory Since mass flow rate is affected by the pressure pulsation in the pressure plenum, while the latter being determined by the former, iteration in the calculation should be made for convergence. The gas pulsation in pipings is found to have an adverse effect on the compressor's performance, and the magnitude of the gas pulsation can be lowered by increasing snubber volume.

  • PDF

The Vibration Analysis of Snubber for Reciprocating Type Hydrogen Compressor (왕복동식 수소 압축기용 완충기 진동 특성 분석)

  • Kim, H.J.;Jang, Y.S.;Cho, S.W.;Choi, B.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.53-56
    • /
    • 2007
  • The reciprocating type hydrogen compressor is occurred by the pulsation from the mechanism and this pulsation is make much noise and vibration. Therefor snubber is installed for pulsation decreasing. The five type snubber models were designed for increasing pulsation amplitude reduction and decreasing pressure loss in snubber considering output pipe location as design value. And the pressure flued analysis is carried by CFD. In this paper, each type snubber according CFD result are analyzed by the MSC/NASTRAN to identify the vibration characteristic of each type. The vibration results are compared with CFD results.

  • PDF

Performance of water-jet pump under acceleration

  • Wu, Xian-Fang;Li, Ming-Hui;Liu, Hou-Lin;Tan, Ming-Gao;Lu, You-Dong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.794-803
    • /
    • 2021
  • The instantaneous acceleration affects the performance of the water-jet pump obviously. Here, based on the user-defined function, the method to simulate the inner flow in water-jet pumps under acceleration conditions was established. The effects of two different acceleration modes (linear acceleration and exponential acceleration) and three kinds of different acceleration time (0.5s, 1s and 2s) on the performance of the water-jet pump were analyzed. The results show that the thrust and the pressure pulsation under exponential acceleration are lower than that under linear acceleration at the same time; the vapor volume fraction in the impeller under linear acceleration is 27.3% higher than that under exponential acceleration. As the acceleration time increases, the thrust gradually increases and the pressure pulsation amplitude at the impeller inlet and outlet gradually decreases, while the law of pressure pulsation is the opposite at the diffuser outlet. The main frequency of pressure pulsation at the impeller outlet is different under different acceleration time. The research results can provide some reference for the optimal design of water-jet pumps.

The Vibration Characteristic of Optimizing Snubber of Reciprocating Type Hydrogen Compressor for Pressure Loss Reduction (압력 손실을 줄이기 위해 최적화된 왕복동식 수소 압축기용 완충기의 진동 특성 분석)

  • Kim, W.C.;Kim, H.J.;Jeong, J.H.;Jang, Y.S.;Choi, B.K.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1116-1122
    • /
    • 2008
  • The reciprocating type hydrogen compressor has a pulsation due to the reciprocative characteristics which results in noise and vibration. Snubber is installed for the relaxation of pulsation, but it causes reduction of compressor efficiency because of pressure loss. Five types of snubber were modeled for the numerical investigation of the effect of the relative position of inlet and outlet and buffer angle on the pulsation amplitude and pressure loss. MSC/NASTRAN is used as a numerical tool to identify the vibration characteristic of each type. Frequency responses in forced vibration mode are compared for various cases and buffer angles.

Vibration Analysis for Oil Gear Motor considering Pulsation Pressure (맥동압을 고려한 냉각팬 오일 기어모터의 진동해석)

  • Shin, Yoo-In;Yi, Chung-Seob;Jeong, Ung-Gi;Suh, Jeong-Se;Song, Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.793-798
    • /
    • 2012
  • Oil gear pump is used for the cooling pump system of commercial vehicle. The hydraulic pulsation pressure of oil gear pump is one of the most important reasons for the vibration and noise of the pump. In this study, the several hydraulic factors acting on oil gear motor are analyzed by CFD in operation of cooling system. Forced vibration analysis due to hydraulic pulsation pressure is analyzed by FEA for predicting deformation and equivalent stress.

Study on Pressure Pulsation and Cavity Resonance in Discharge Plenum of Hermetic Compressor (공조용 밀폐형 압축기의 토출부 압력맥동 및 케비티 공명에 대한 연구)

  • 이진갑
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.302-308
    • /
    • 2000
  • The major source of noise in air-conditioner is a compressor. Therefore, noise reduction in a compressor is quite significant as an element technology in air-conditioner field. Recently, a scroll compressor is widely used, because a scroll compressor features lower noise, due to less pulsation of gas pressure, than that of the rotary compressor. During a past noise reduction effort on a scroll compressor, noise radiation from the discharge portion of the hermetic shell was identified as the major contributor to overall noise. For a reduction of noise, the source of noise at the discharge portion must be identified. This paper presents detailed analyzes for the discharge pressure pulsation and cavity resonance at discharge space, which will make possible a low noise design of a scroll compressor.

  • PDF

Hydraulic Pulsation and Noise Reduction using the Helmholtz Attenuator (헬름홀츠 감쇠기를 응용한 유압시스템의 유압맥동 및 소음 최소화 연구)

  • 김동현;이대옥;최근국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.614-619
    • /
    • 1997
  • The hydraulic pressure pulsation has on the effected on the acoustic nosie and control performance of the hydraulic-servo system. The Helmholtz attenuator introduction on the hydraulic line is an efficient device to reduce the hydraulic pulsation. The salient feature of causing hydraulic pulsation and the frequency characteristics of Helmholtz attenuator are studied. The hydraulic filter design parameters such as the locating position, connecting orifice area and accumulator volume are mathematically analyzed. The instrumental works are carried out with the remarkable reduction of the hydraulic pressure pulsation magnitude and the acoustic noise level.

  • PDF

Study on the Pressure Variation in a Chamber Caused by Pulsation Pressure (맥동압을 가지는 챔버내의 압력변화에 관한 연구)

  • Yi, Chung-Seub;Shim, Kyu-Jin;Akbar, Wanda Ali;Chung, Han-Shik;Jeong, Hyo-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.132-138
    • /
    • 2007
  • Experimental results of pulsating pressure behavior inside a chamber have been confirmed by computational work. Inside-cylinder pressure shows unstable condition at low rpm. This is caused by plate-type suction valve. It has effect up to inlet of the chamber. But trembling phenomenon is reduced as the pressure is enlarged by increasing the rpm. Result comparison between experimental and numerical analysis shows pulsation reduction is affected by the chamber. We can confirm that compressible effect of the working flow is shown at chamber inlet by increasing rpm. On the other side, this effect is declined at chamber outlet by increasing rpm. It means outlet pressure is going on balance with atmosphere pressure. Buffer plate-type chamber has efficiency of pulsation flow reduction.

Changes in The Pressure-Flow Control Characteristics of Shunt Valves by Intracranial Pressure Pulsation (뇌압 펄스에 의한 션트밸브의 압력-유량제어 특성의 변화)

  • 홍이송;이종선;장종윤
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.391-395
    • /
    • 2002
  • Shunt valves used to treat patient with hydrocephalus were numerically simulated to investigate influence of pressure pulsation on their flow control characteristics. We modeled flow orifice through the shunt valve and imposed pulsating pressure and valve diaphragm movement to compute flow through the valve. The results of our study indicated that flow rates increased more than 40% by introducing pressure pulsation and diaphragm movement on the shunt valve. Our results demonstrate the pressure-flow control characteristics of shunt valves implanted above human brain may be quite different from those obtained by syringe pump test just after manufacture that induces uniform pressure.