• Title/Summary/Keyword: Pulsation, Pressure fluctuation

Search Result 21, Processing Time 0.022 seconds

A Study on Pressure, Flow Fluctuation and Noise in the Cylinder of Swash Plate Type Axial Piston Pump (사판식 피스톤형 유압펌프에서의 실린더내 압력, 맥동, 소음에 관한 실험적 연구)

  • Jang, D.H.;Lee, S.K.;Kwon, J.H.;Park, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.3
    • /
    • pp.1-9
    • /
    • 2009
  • Noise reduction for hydraulic pump is strongly demanded in the market with its efficiency and durability. In order to meet this demand, it is necessary to reveal mechanism for noise and relationship between the important factors. In this paper, mathematical model for cylinder pressure which is primary reason of pulsation and sound noise were established, and examined its pressure profile by simulation. Also, the valve plate of three kind types are manufactured and tested for piston pressure, pressure pulsation, and sound power level based on the tentative standard which is officially recognized.

  • PDF

Numerical prediction of pressure pulsation amplitude for different operating regimes of Francis turbine draft tubes

  • Lipej, Andrej;Jost, Dragica;Meznar, Peter;Djelic, Vesko
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.375-382
    • /
    • 2009
  • Hydraulic instability associated with pressure fluctuations is a serious problem in hydraulic machinery. Pressure fluctuations are usually a result of a strong vortex created in the centre of a flow at the outlet of a runner. At every radial turbine and also at every single regulating axial turbine, the draft tube vortex appears at part-load operating regimes. The consequences of the vortex developed in the draft tube are very unpleasant pressure pulsation, axial and radial forces and torque fluctuation as well as turbine structure vibration. The consequences of the vortex are transferred upstream and downstream with amplitude and frequency modulation in respect of the turbine operating regime, cavitation conditions and air admitted content. Numerical prediction of the vortex appearance in the design stage is a very important task. The amplitude of the pressure pulsation is different for each operating regime therefore the main goal of this research was to numerically predict pressure pulsation amplitude versus different guide vane openings and to compare the results with experimental ones. For the numerical flow analysis of a complete Francis turbine (FT), the computer code ANSYS-CFX11 has been used.

Pressure Variation Characteristics at Trapping Region in Oil Hydraulic Piston Pumps (유압 피스톤 펌프의 폐입 구간에서의 압력 변동 특성)

  • Kwag Jae-ryon;Oh Seok-Hyung;Jung Jae-Youn
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.329-334
    • /
    • 2003
  • Design of pre-compression region(trapping region) of the valve plate is an important element to minimize the pressure fluctuation in a cylinder and in discharge process, and pump noise. In this study, we tried to prove what the characteristics of the oil hydraulic pump would be according to the angle of the trapping region. Three kinds of asymmetrical valve plates were used. As a result, we found that by designing the trapping region, the slope of the pressure rise in the cylinder port from low-pressure suction region to high-pressure discharge region is relaxed and the pressure fluctuation width and the discharge pressure pulsation are reduced. Therefore, because the pump gets smooth pressure fluctuation and low fluid Impact, the pump noise is reduce.

  • PDF

A Study on the Reduction of Pulsations in a 3/4 Open Jet Wind Tunnel (3/4 Open Jet 실차풍동에서의 Pulsation 감소에 관한 연구)

  • Kim Moo-Sang;Kee Jung-Do;Lee Jung-Ho;Jang Jin-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.839-842
    • /
    • 2002
  • Some open jet wind tunnels have been operating under limitations due to large pressure fluctuations at some wind tunnel speeds. The Hyundai Aero-acoustic full scale Wind Tunnel (HAWT), which was completed in 1999, shows that most of the specifications were fulfilled but wind tunnel pulsations at some wind speeds were observed. Hyundai Motor Company started the wind tunnel modification in order to solve this problem in 2001. After the modification work the amplitude of pressure fluctuation was reduced and below required level over full wind speed range. Aero-acoustic performance, e.g. background noise, as well as aerodynamic performance were improved after this work.

  • PDF

A Study on the Vibration Responses of Piping Systems by Pulsation Flow (맥동류에 의한 파이프 계의 진동응답에 관한 연구)

  • Lee, Dong-Myung;Choi, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.68-75
    • /
    • 1997
  • In this study, to investigate vibration response of piping systems due to pulsation flow, a transfer matrix method is presented. Fluid-pipe interaction is formulated using wave equation for flow velocity and pressure, which depends on position and time. From the wave equation, transfer matrix is obtained. The dynamic responses of piping systems induced by pulsation flow appeared to depend upon fluctuation fluid velocity and pressure occurrnece from pulsation, and beating phenomena were observed near the resonance. Consequently, the dynamic behaviors of piping systems appeared to the same as response characteristics of the inside flow pattern of the pipe, and are determined by the inside fluid flow.

  • PDF

The CFD Analysis Comparison of Several Snubbers with different Buffer Width (버퍼의 넓이가 다른 스너버의 수치해석 비교)

  • Lee, G.H.;Shim, K.J.;Lee, Y.H.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.38-43
    • /
    • 2007
  • Pulsation is an inherent phenomenon in reciprocating compressors. It interacts with piping to cause vibrations and performance problems. Indiscriminately connecting to a compressor can be dangerous and cost money in the form of broken equipment and piping, poor performance, inaccurate metering, unwanted vibration, and sometimes noise. Piping connected to a compressor can materially affect the performance and response. To minimize these detrimental effects, reciprocating compressor system should be equipped by pulsation suppression system. The system usually comprises bottle volume, called snubber. Snubber is one of the most important parts in hydrogen compressing system. It has installed reciprocating hydrogen compressor. One of these components is snubber which has function to reduce pulsation waveform and to remove the impurities in the hydrogen gas. A snubber has an inclined plate as a buffer, which is installed inside snubber. When the pressure loss and the pulsation of pressure within a snubber is minimized, the snubber could get more applicability. Therefore, a study to find an optimum geometric size on a several snubbers which have different buffer width, has been conducted using a numerical analysis.

  • PDF

Hexagonal reciprocating pump: advantages and weaknesses

  • Stanko, Milan;Golan, Michael
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.3
    • /
    • pp.121-136
    • /
    • 2013
  • This paper reports the 1-D fluid transient simulation results of the discharge flow conditions in a 6-cylinder reciprocating slurry pump. Two discharge manifold configurations are studied comparatively; a case with a hexagon shaped discharge manifold where each cylinder discharges at a single vertex, and a case where all the cylinders discharges are lumped together into a tank shaped manifold. In addition, the study examines the effect of two pulsation mitigation measures in the case of hexagonal manifold; a single inline orifice in one of the hexagon sides and a volumetric dampener at the manifold outlet. The study establishes the pressure and flow fluctuation characteristics of each configuration and decouples the pulsation characteristics of the pump and the discharge manifold.

Spray Characteristics of Simplex Swirl Injector with Low Hydrodynamic Disturbance Generated by Pressure Fluctuation in Feed Line (축방향 압력섭동에 의해 발생되는 저주파 수력학적 교란이 단일 스월 인젝터에 미치는 영향 분석)

  • Khil, Tae-Ock;Kim, Sung-Hyuk;Kim, Hyeon-Sung;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • The low frequency combustion instability phenomena generated by pressure drop oscillation such as propellant shake in feed line are studied. To generate the flowrate oscillation by the pressure pulsation up to 400Hz without flow discontinuities and cavitations, a hydrodynamic mechanical pulsator of rotating disk type was produced. Injection pressure conditions are 5, 7 and 9 bar and pressure fluctuation frequency conditions are 0, 4, 6 and 8 Hz. When the injection pressure was oscillated by a mechanical pulsator, the spray shape was pulsated regularly. During the pulsated state of the spray with a mechanical pulsator, the spray characteristics, such as spray angle and liquid film thickness in orifice exit, were measured and compared with those in steady state without a mechanical pulsator. Though the mean injection pressure was fixed in the steady and fluctuating state, there were some differences in all measured values, i.e. liquid film thickness and spray cone angle, between both states.

  • PDF

A Theoretical Study on the Fluid-Structure Interaction Due to the Pump in the Pressurized Water Reactor (원자로에서 펌프에 의해 야기되는 유체와 구조물 상호 작용에 대한 이론적 연구)

  • Lee, Kye-Bock;Jong Ryul park
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.710-720
    • /
    • 1995
  • The propagation of pump-induced pressure pulsation in a reactor is important because of the potential for vibration and resultant damage of reactor internals. A hydrodynamic model has been developed to obtain the pressure fluctuation due to the operation of pumps in the annulus(between the core support barrel and reactor vessel of a pressurized water reactor) including the coolant inlet pipe. The mathematical analysis is formulated in accordance with the linearized Navier-Stokes equation by assuming a compressible, inviscid flow. Two regions are considered separately and by coupling the solutions of the inlet pipe and the annulus, the inlet nozzle pressure(pressure at pipe and annulus interface) is to be calculated without assumptions. The geometric parameter effect on the pump-induced pressure pulsation is evaluated. Comparison of predicted and measured inlet nozzle pressure values for each forcing frequency shows good order of magnitude agreement.

  • PDF

A Study on Dynamic Characteristics of Gas Centered Swirl Coaxial Injector Varying Tangential Inlet Diameter with Liquid Pulsation (기체 중심 동축형 분사기의 접선방향 유입구 지름 변화에 따른 액체 가진 연구)

  • Oh, Sukil;Park, Gujeong;Kim, Seongju;Lee, Hyeongwon;Yoon, Youngbin;Choi, Jeong-Yeol
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.62-68
    • /
    • 2017
  • It is important to study on the combustion instability to develop liquid rocket engines for preventing lower combustion efficiency and destruction of combustion chamber. There are many researches on simplex injector with liquid pulsation to solve this problem. In real rocket engine system, however, they use coaxial injectors. Therefore, research on coaxial injector with liquid pulsation is essential. In this study, we investigate dynamic characteristics of gas centered swirl coaxial injector varying tangential inlet diameter. A mechanical pulsator was used to generate an excitation in the liquid flow, and the response characteristics of the injector were confirmed. As tangential inlet diameter increased, mass flow rates increased and spray angle decreased. As tangential inlet diamter decreased, gain decreased because the pressure fluctuation in the injector manifold rarely passed through the inlet. Additionally, it was confirmed that a sufficiently small tangential inlet served as a damper.