• Title/Summary/Keyword: Pulping time

Search Result 37, Processing Time 0.03 seconds

Optimization of Repulping Process of Unsorted ONP for Pulp Mold (I) - Laboratory high consistency pulper - (펄프몰드 제조를 위한 미분류 신문폐지의 펄핑 공정 최적화 (제1보) - 실험용 고농도 펄퍼 이용 -)

  • Ryu, Jeong-Yong;Cho, Byoung-Uk;Kim, Tae-Keun;Park, Dae-Sik;Shin, Eun-Ju;Song, Bong-Keun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • In order to utilize unsorted ONP, which contains leaflets (printed coated papers), to produce pulp mold, optimum conditions for a repulping process were investigated with a laboratory high consistency pulper. It was concluded that medium or high consistency pulping is necessary to accelerate the rate of deflaking of unsorted ONP. Considering flake content, fines content and pulping energy, the optimum conditions for the laboratory Helico pulper were 11% of repulping concentration and 3 min of repulping time. The repulping temperature shall be at least $30^{\circ}C$. Aging of paper slows down the rate of de flaking but in an actual pulp molding process its effect could be negligible.

Quality Improvement of Rayon Grade Bamboo Pulp by Modified Bleaching

  • Tripathi, Sandeep;Mishra, Om Prakash;Sharma, Nirmal;Chakrabarti, Swapan Kumar;Varadhan, Raghavan
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • The presence of high silica in bamboo hinders the use of this material for production of rayon grade pulp. Research has been carried out to overcome this deficiency and improve quality of rayon grade pulp with the modification in pulping and bleaching process. Effect of acid boosted water prehydrolysis, sulphuric acid pre-treatment of unbleached pulp, chlorination stage at lower pH and treatment of bleached pulp with $SO_2$ water were evaluated. Acid boosted water prehydrolysis of chips reduces prehydrolysis time by 50 minutes as compared to water prehydrolysis. Treatment of unbleached pulp with sulphuric acid reduces ash, acid insoluble, silica, calcium and iron contents of the pulp by 56, 31, 82, 84 and 60% respectively. The addition of acid, increase in kappa factor in $C_D$ stage and combination of both were effective in removing silica in the pulp. Treatment of final bleached pulp with $SO_2$ water removes silica to a great extent and improves optical properties of the pulp as compared to $H_2SO_4$ or PAA. Pretreatment of the pulp with acid and modification in the bleaching process can reduce silica substantially and improve the quality of rayon grade bamboo pulp.

Effects of Aectic Acid-Water Solvents on the Organic Acid pulping of Wood (아세트산(酸)-물 용매계(溶媒系)에 의한 목재(木材)의 유기산(有機酸) 증해효과(蒸解效果))

  • Lee, Sun-Ho;Jo, Byoung-Muk
    • Journal of Forest and Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.67-80
    • /
    • 1993
  • There are a lot of serious problums associated with conventional pulping processes, such as kraft and sulfite. In order to tackle these difficulties, organic acid pulping of Populus tomentiglandulosa T. Lee and Pinus densiflora S. et Z. have been investigated as on alternative method. The acetic acid cooking of Populus tomentiglandulosa T. Lee achieved good delignification with pulp yields of 55-65% under almost all cooking conditions. In the acetic acid cooking of Pinus densiflora S. et Z., it was not cooked at a low temperature. The strength properties of the acetic acid pulps from Pinus tomentiglandulosa T. Lee showed the optimum with 95% acetic acid concentration at $185^{\circ}C$ maximum cooking temperature for 0.5hr cooking time. The strength properties of the acetic acid pulps from Pinus densiflora S. et Z. displayed excellent tear strength in comparison with those of the other softwoods. In the process of acetic acid cooking, glucose has been removed a little, but other sugars have been eliminated. The elemental compositions and $C_9$ formulas of acetosolv lignins from Populus tomentiglandulosa T. Lee were 63.88% carbon, 5.45% hydrogen and 30.67% oxygen and $C_9H_{9.15}O_{3.24}$ The elemental compositions and $C_9$ formulas of acetosolv lignins from Pinus densiflora S. et Z. were 61.85% carbon, 6.14% hydrogen and 32.01% oxygen and $C_9H_{9.15}O_{3.50}$ The Wt. av. MWT's of the acetosolv lignins from Pinus tomentiglandulosa T. Lee and Pinus densiflora S. et Z. were 731 and 725.

  • PDF

Characteristics of Thermomechanical Pulps Made of Russian Spruce and Larix, and Myanmar Bamboo (러시아산 가문비와 낙엽송, 그리고 미얀마산 대나무로 제조한 열기계펄프 특성 연구)

  • Lee, Ji-Young;Kim, Chul-Hwan;Nam, Hyegeong;Park, Hyunghun;Kwon, Sol;Park, Dong-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.135-146
    • /
    • 2016
  • Three fiber sources including Russian spruce (Picea jezoensis) and larix (Larix leptolepis), and Myanmar bamboo (Phyllostachys bambusoides) for thermomechanical pulp were explored to replace domestic pine (Pinus densiflora) pulp that has some limitations in an aspect of supply and pitch trouble. Thermomechanical pulps were manufactured under the identical condition, and then compared with their representative pulp properties and pulping process. Both Russian larix and Myanmar bamboo contained large amounts of extractives that would negatively affect mechanical pulping processes. Russian spruce showed the least contents in shives and pitch. Russian spruce and domestic pine reached an optimum freeness level within a short pulp processing time, which consumed less amount of refining energy compared to larix and bamboo. In particular, the spruce wood showed the highest brightness level which might lead to a less consumption of bleaching chemicals. It was expected that Russian spruce could be replaced with the domestic pine wood in respect of both pulping process and pulp quality.

Performance Evaluation of Batch Pulp Digester using By-product (Sheath) from Bamboo Laminate Production

  • Fatoki, Jimoh Gbenga
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.362-368
    • /
    • 2018
  • Purpose: Self-sufficiency in paper production is desired in Nigeria. This study was aimed at evaluating the performance of a locally fabricated batch pulp digester. Methods: The pulp yields of sheaths generated as waste in the production of bamboo (Bambusa vulgaris) laminates were determined at different liquor concentrations and treatment time after preliminary experiments to ascertain the conditions under which the sheath started to pulp. Moreover, the optimum pulping conditions and fiber characteristics were determined and estimated, respectively, to ascertain the pulp fiber suitability for paper production. Results: An optimum pulp yield of 65.1% was obtained at 50% NaOH and 25% $Na_2S$ liquor concentration (w/w) when the cooking time was 4 h. The results of fiber characterization of the pulp indicated an average fiber length of 2.19 mm with a low Runkel ratio of 1.63, both of which signify the suitability of the pulp for medium quality paper production. Conclusions: Softwood pulp can be blended with the fibers to improve the strength of the produced paper; further investigation should be carried out to use other non-woody plants for pulp and papermaking.

The Change of Kenaf Fiber Characteristics by the Contents of Noncellulosic Material (비셀룰로오스 함량에 따른 케나프 섬유의 특성변화)

  • Lee, Hye-Ja;Han, Young-Sook;Yoo, Hye-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.11 s.158
    • /
    • pp.1581-1588
    • /
    • 2006
  • The effects of removal of lignin or hemicellulose on the cottonizing and pulping characteristics of kenaf fiber were studied by comparing the conditions of non-cellulosic material contents, fiber lengths and dyeability. And the effects of lignin or hemicellulose on dyeability of the kenaf fiber using CI Direct Green 26 and CI Direct Red 81 were investigated. The results were as follows. The lignin contents decreased and the kenaf fiber became shorter and finer as the reaction time with sodium chlorite increased. The hemicellulose could be removed by treating sodium hydroxide solution to the fiber from which the lignin partly removed. The 80% of hemicellulose could be removed by 5% of sodium hydroxide solution in 5 minutes. But if lignin were not removed at all, hemicellulose could not be removed. The fiber lengths proper for apparel were obtained after treating sodium chlorite for 10-20 minutes and those for pulping were obtained after treating sodium chlorite for 40 minutes. The kenaf fibers from which lignin and hemicellulose partly removed were dyed with CI Direct Green 26 and CI Direct Red 81. Their dyeability increased as the removal rates of lignin increased. The ${\Delta}E$ values of kenaf fiber dyed with CI Direct Green 26 were lower than CI Direct Red 81.

Chemical Characteristics and Application for Kraft Pulp of Bed Log Wastes (표고골목의 화학적 특성과 펄프재로서의 이용방안)

  • Jeong, Myung-Joon;Kim, Dae-Young;Jo, Byoung-Muk;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.79-88
    • /
    • 2005
  • This research studied the utilization of the bed log wastes as a papermaking grade pulp. Five different bed log samples from shiitake mushroom (Lentinus edodes (Berk.) Sing) cultivation were collected by the cultivating periods of 1 to 5 years. The wood chemical composition and the characteristics of kraft pulping of each sample were investigated. The results of chemical composition showed that the rate of carbohydrate (glucose and xylose) content in sapwood was decreased as the cultivation period was increased. In heartwood, there was no significant difference. The screening yield of non-cultivated bed log from kraft pulping was higher than that of cultivated one, but the reject of cultivated one, especially for 5 year-cultivated, was lower than non-cultivated bed log. The fiber length and width was continuously decreased as the cultivation period was increased. Therefore, the freeness of the pulp from the cultivated bed log was sharply decreased comparing to non-cultivated due to the fiber cutting and the increased fine content. The dry strengths were increased according to the increasing addition level of bed log kraft pulp to KOCC and non-cultivated wood pulp. From the overall results, the pulp from 5 years cultivated bed log can be reasonably used if it is mixed with long fiber pulp for advantages such as reducing beating time.

The Effect of Hydrogen Peroxide Bleaching on the Properties of Unbleached Hardwood Kraft Pulp Adsorbed with Birchwood Xylan

  • Li, Lizi;Lee, Sang-Hoon;Lee, Hak-Lae;Youn, Hye-Jung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.169-169
    • /
    • 2011
  • Xylans are polysaccharides present in large amounts in cell walls of land plants. However, during kraft cooking, a high portion of hemicelluloses including xylans are dissolved in the cooking liquor. In the current trend for a more effective utilization of biomass, attention has been paid to the exploitation of xylans as strength-enhancing additives for paper. It is believed that surface xylan adds flexibility to the cell wall/fiber surface, resulting in stronger fiber-fiber joints or greater contact area between the fibers. Accordingly, there is proposal for a new pulping process involving the extraction of xylan prior to pulping, followed by their re-adsorption on the unbleached pulp. A suitable bleaching process should be employed then, which ought to does not only improve the brightness of the pulp, but also remain the effect of the adsorption of xylan on pulp fibers. The objective of this research was to investigate the impact of hydrogen peroxide bleaching on the properties of unbleached hardwood kraft pulp pretreated with birchwood xylan by measuring optical properties (brightness, post color number, opacity) as well as physical properties (tensile index, tearing index, bulk) of handsheets made from the bleached pulp. In the meantime, the influence of process variables of peroxide bleaching including bleaching temperature, time, initial pH and $MgSO_4$ dosage were studied.

  • PDF

Utrastructural Analysis of the Delignification Behaviour in P-Cresol-Water Solvent Pulping (크레졸-물 용매펄프화의 탈리그닌에 관한 초미세구조적 분석)

  • Kim, Chang-Keun;Jo, Byoung-Muk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.60-71
    • /
    • 1992
  • To investigate the delignification behaviour in solvolysis pulping process, Populus alba ${\times}$ glandulosa H. and Pinus Kuraiensis S. et Z. were cooked with p-cresol and vater solvent(2:8, 5:5, 8:2 v/v) at $175^{\circ}C$ for 9 cooking time levels(20, 40, 60, 80, 100, 120, 140, 160, 180, min). Pulp yield, residual lignin content, de lignification rate, decarborhydration rate were determined. Delignification behaviours were analyzed by TEM. 1. The p-cresol-water solvent cooking of P. alba ${\times}$ glandulosa showed good delignification at the solvent system which the mixture ratio of p-cresol and water were 2:8(v/v), while the cooking of P. koraiensis with the p-cresol and water mixture ratio of 5:5 was no good. 2. P. alba ${\times}$ glandulosa showed three step-delignification phenomena at the solvent system which the mixture ratio of p-cresol and water were 2:8(v/v) anti 5:5(v/v). But P. koraiensis showed a first order delignification reaction at the same mixture ratio of p-cresol and water solvent system. 3. In TEM micrograph obtained for the solvent system which the mixture ratio of p-cresol and water was 5:5(v/v), the partial delignification of the cell corner of P. alba ${\times}$ glandulosa and P. koraiensis were observed at 60min. of cooking time. Complete delignification at the cell corner of P. alba ${\times}$ glandulosa was observed at 160min. and that of P. koraiensis was observed of 180min. of cooking time. 4. In optical microscopic observation, fiber separation of P. alba ${\times}$ glandulosa occured at 120min. and that of P. koraiensis began at 140min. of cooking time. 5. At the solvent system which the mixture ratio of p-cresol and water was 5:5(v/v), middle layer on secondary wall($S_2$) and cell corner of P. alba ${\times}$ glandulosa were more selectively delignified than primary wall(P) and outer layer on secondary wall($S_1$). However P. koraiensis did not showed any difference in delignification between cell wall layers and cell corner.

  • PDF

Red Algae Pulp and Its Use in Papermaking

  • Seo, Yung-Bum;Lee, Youn-Woo;Lee, Chun-Han;You, Hack-Chul;Boo, Sung-Min
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.153-159
    • /
    • 2006
  • Red algae were used to make bleached pulp, from which paper handsheet samples were made. Red algae consists of rhizoidal filaments, epidermal tissues whose color were reddish, mucous carbohydrates, and other minor elements. Rhizoidal filaments of high brightness were obtained after extracting out mucous carbohydrates, and bleaching the remainder by using bleaching chemicals. The sizes and shapes of several rhizoidal filaments (or red algae pulp) from different red algae species were examined, and their handsheet properties were compared. Transparent and transluscent high density paper samples were made without applying refining process from the red algae pulp. White paper samples with good printability and excellent formation were made. We are developing pilot scale pulping and papermaking facilities at this time.

  • PDF