• Title/Summary/Keyword: Pullout load test

Search Result 77, Processing Time 0.03 seconds

대구경 소켓경사반력말뚝의 인발거동에 관한 연구

  • 최용규;김상옥;정창규;정성기;김상일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.277-284
    • /
    • 2000
  • Using the large diameter (D = 2,500mm, L = 40m) batter steel pipe piles, designed as compression piles but used as reaction piles during the static compression load test of socketed test piles (D = 1,000mm, L = 40m), static pile load tests for large diameter instrumented rock-socketed piles were performed. The reaction steel pipe piles were driven 20m into the marine deposit and weathered rock layer and then l0m socketed with reinforced concrete through the weathered rock layer and into hard rock layer. Steel pipe and concrete in the steel pile part, and concrete and rebars in the socketed parts were instrumented to measure strains in each part. The pullout amounts of reaction pile heads were also measured with LVDT. During the static pile load test, total compressional load of about 20MN was loaded on the head of test piles, but load above 20MN was not loaded due to lack of loading capacity of loading system. Over the course of the study, maximum pullout amount up to 7mm was measured in the heads of reaction piles when loaded op to 10MN and 1mm of pullout amount was measured. More than 85% of pullout load was transfered in the residual weathered rock layer and about 10% in the soft rock layer, which was somewhat different transfer mechanism in the static compressional load tests.

  • PDF

Test of Headed Reinforcement in Pullout

  • Park, Dong-Uk;Hong, Sung-Gul;Lee, Chin-Yong
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.102-110
    • /
    • 2002
  • Results of an experimental study on the pullout behavior of the headed reinforcement are presented. A total of 48 pullout tests was performed to evaluate pullout strengths and load-displacement behaviors in pullout of the headed bars. The square steel heads had gross area of 4 $A_{b}$ and thickness of $d_{b}$ The test program consisted of three pullout test groups: Simple and Edge pullout tests using plain concrete slabs, comparison of pullout performances between the standard hooks and the headed reinforcement, and pullout tests of headed reinforcement using reinforced concrete columns. Test variables included concrete strengths ( $f_{c}$' = 27.1MPa, 39.1MPa), reinforcing bar diameters (D16~D29), embedment depths (6 $d_{b}$~12 $d_{b}$), edge conditions, column reinforcement, and single-vs.-multiple bar pullout. Test results revealed that the heads effectively provided the pullout resistances of the deformed bars in tension. The load-displacement behaviors were similar between the 90-degree hooks and the headed reinforcement. When a multiple number of headed bars installed with small head-to-head spacings was pulled out, reinforcement designed to run across the concrete failure surface in a direction parallel to the headed bars helped improve the pullout performances of the headed reinforcement.t.ement.t.

  • PDF

The Relation between Pullout Load and Compressive Strength of Ultra-High-Strength Concrete (초고강도 콘크리트의 인발하중과 압축강도와의 관계)

  • Ko, Hune-Beom;Kim, Ki-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • The pullout test, a nondestructive testing(NDT), for pre-installed inserts is perhaps the most widely used technique to estimate the in-situ compressive strength of concrete. It measures the force needed to pullout a standardized metal insert embedded into concrete members. The pullout test was certified by the American Society for Testing and Materials(ASTM) and Canadian Standards Association(CSA) as a reliable method for determining the strength of concrete in concrete structures under construction. To easily estimate the strength of ultra-high-strength concrete, a simplified pullout tester, primarily composed of a standard 12mm bolt with a groove on the shaft as a break-off bolt, an insert nut, and a hydraulic oil pump without a load cell, was proposed. Four wall and two slab specimens were tested for two levels of concrete strength, 80MPa and 100MPa, using a simplified pullout tester with a load cell to verify the advantages of the pullout test and simplified pullout test. The compressive strength of concrete, pullout load, and the rupture of the break-off bolt were measured 11 times, day 1 to 7, 14, 21, 28, and 90. The correlation of the pullout load and the compressive strength of each specimen show a higher degree of reliability. Therefore, a simplified pullout test can be used to evaluate the in-place strength of ultra-high-strength concrete in structures. The prediction equation for the groove diameter of the break-off bolt(y) with the concrete strength(x) was proposed as y=0.0184x+5.4. The results described in this research confirm the simplified pullout's utility and potential for low cost, simplicity, and convenience.

The Application of a Simplified Pullout Test for High-Strength Concrete (고강도 콘크리트에 대한 간이 인발시험법 적용)

  • Ko, Hune-Bum;Jeon, Doo-Jin;Lee, Min-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.49-55
    • /
    • 2017
  • In the seventies, a number of researchers carried out experiments on pullout tests with prototype equipment, and the pullout test was certified as a reliable nondestructive testing(NDT) method for determining the strength of concrete. To estimate the strength of high-strength concrete, we propose a simplified pullout test that uses as a break-off bolt a standard 10mm bolt with a groove on the shaft, an insert nut, and a pullout instrument that includes a hydraulic oil pump without a load cell. To verify the advantages of the simplified pullout test(low cost, simplicity, and convenience), four wall specimens were tested with two levels of concrete strength, 30 MPa and 50 MPa, using a simplified pullout tester with a load cell. The pullout load and concrete compressive strength were measured every day until day 7, day 14, day 21 and day 28. It was found that the pullout load was very similar to the compressive strength. Therefore, we have verified that a simplified pullout test can be used to evaluate the in-place strength of high-strength concrete in structures. The prediction equation of the groove diameter of the break-off bolt(y) with the concrete strength(x) was derived as y=0.05x+3.79, with a coefficient of determination of 0.88 found through regression analysis.

An experimental study on the resistance and movement of short pile installed in sands under horizontal pullout load

  • Kwon, Oh Kyun;Kim, Jin-Bok;Kweon, Hyuck-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.87-97
    • /
    • 2014
  • In this study, the model tests were conducted on the short piles installed in sands under a horizontal pullout load to investigate their behavior characteristics. From the horizontal loading tests where dimensions of the pile diameter and length, and loading point were varied, the horizontal pullout resistance and the rotational and translational movement pattern of the pile were investigated. As a result, the horizontal pullout resistance of the pile embedded in sands was dependent on the pile length, diameter, loading point, etc. The ultimate horizontal pullout load tended to increase as the loading point (h/L) moved to the bottom from the top of the pile, regardless of the ratio between the pile length and diameter (L/D), reached the maximum value at the point of h/L = 0.75, and decreased afterwards. When the horizontal pullout load acted on the upper part above the middle of the pile, the pile rotated clockwise and moved to the pullout direction, and the pivot point of the pile was located at 150-360mm depth below the ground surface. On the other hand, when the horizontal pullout load acted on the lower part of the pile, the pile rotated counterclockwise and travelled horizontally, and the rotational angle was very small.

Estimation of Ultimate Pullout Resistance of Soil-Nailing Using Nonlinear (비선형회귀분석을 이용한 가압식 쏘일네일링의 극한인발저항력 판정)

  • Park, Hyun-Gue;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.65-75
    • /
    • 2016
  • In this study, we constructed a database by collecting field pullout test data of the soil nailing using pressurized grouting, and suggested a method to estimate the ultimate pullout resistance using nonlinear regression analysis to overcome the problems of ultimate pullout resistance estimation using graphical methods. The load-displacement curve estimated by nonlinear regression showed a very high correlation with the field pullout test data. Estimated ultimate pullout load by nonlinear regression method was average 29% higher than estimated ultimate pullout load using previous graphical method. A sigmoidal growth model was found to be the best-fitting nonlinear regression model against rapid pullout failure. Further, an asymptotic regression model was found to be the best fit against progressive nail pullout. The unit ultimate skin friction suggested in this research reflected in the domestic geotechnical characteristics and the specifications of the pressurized grouting method. This research is expected to contribute towards establishing an independent design standard for the soil nailing by providing solutions to the problems that occur when using design charts based on foreign research.

Bond Strength of Steel Fiber Incorporated in Ultra High Performance Fiber-Reinforced Concrete (초고성능 섬유보강 콘크리트에 혼입된 강섬유의 부착강도 평가)

  • Kang, Su-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.547-554
    • /
    • 2013
  • This study was intended to estimate the bond strength of steel fiber in UHPFRC through pullout test. The pullout test was carried out with the double-sided pullout specimens with multiple fibers. First, the effect of fiber density on the bond strength was investigated, and the experimental result presented that the density range considered in this study was proved not to produce fiber-to-fiber interaction. The bond strength was estimated from several methods, which are based on the pullout load or energy at peak load, and the total energy absorbed until fibers are pulled out completely. the estimated bond strength obtained from the total energy was shown to be under the influence of the embedded length of fiber. the bond strengths obtained from peak load condition was 6.64 MPa in average, which had little difference compared to 6.46 MPa calculated by peak load only. Considering simplicity of test and analysis, it may be no matter to estimate the bond strength from peak load in pullout test.

Pullout Test of Retrofit Anchors using Deformed Reinforcement and Adhesive

  • Choi, Dong-Uk;Kim, Yon-Gon
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.201-210
    • /
    • 1999
  • An experimental study was carried out to determine pullout behavior of a new type of anchor bolt that used deformed reinforcement and a commercial adhesive. Concrete slabs and columns with about 20-MPa compressive strength were used for 136 pullout tests performed. Test variables included anchor diameter (10 mm ~ 32 mm). embedment depth (10$\Phi$ or 15$\Phi$), edge effect. and Presence of transverse reinforcement in existing concrete. In Tyre-S test. where the edge or reinforcing steel effect was not included, the anchor Pullout strengths increased with increasing anchor diameters. Anchors with 15$\Phi$ embedment depth had higher Pullout strengths than those with 100 embedment depth The largest average Pullout load of 208 kN was determined for anchors made with D25 reinforcement and with 15$\Phi$ embedment depth. In Type-E tests, where the anchors were installed close to the edge of existing concrete, there were reductions in pullout strengths when compared to those determined in Type-S tests. In Type-ER tests, influence of the reinforcement in existing concrete on the anchor pullout strengths was examined using reinforced concrete and plain concrete columns Test results indicated that existing transverse reinforcement (column ties) did not help increase the pullout strength. The overall pullout test results revealed that the new anchor bolt can develop large pullout strengths while the anchors can be made of materials that are readily available in the market.

  • PDF

A Study on the Characteristics of Nondestuctive Tests Including Pullout Test (인발법을 포함한 비파괴시험법에 대한 특성 비교)

  • 고훈범;정성원;음성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.211-215
    • /
    • 1996
  • This paper presents comparisons of pullout load of concrete with compressive strength of cylinders and cores, pulse velocity, and rebound number. A pullout test, which is a relatively new nondestructive technique, measures with a special tension ram the force required to pullout a specially shaped steel rod whose enlarged end has been cast into a concrete block. In this study 3 concrete mixes(normal strength, high-strength & super-high-strength) were made. From each mix, one 100$\times$70$\times$20 concrete block, 24 cylinders$(\phi10mm)$were casted. Each tests were performed on the concrete blocks at 3, 7, 28, and 91days. The test data shows that the pullout test is superior to the rebond hammer and the pulse velocity measurements on the evaluation of concrete strength. The pullout test is satisfactory for estimating the strength of in situ concrete at both early and late age, and its results can be reproduced with an acceptable degree of accuracy.

  • PDF

Pullout and Flexural Performance of Structural Synthetic Fibers by Geometry and Sectional Area Change (구조용 합성섬유의 형상 및 단면적 변호에 따른 부착 및 휨 성능)

  • Won, Jong-Pil;Back, Chul-Woo;Park, Chan-Gi;Han, Il-Yeong;Kim, Bang-Lae
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.643-649
    • /
    • 2003
  • The purpose of this study were evaluated to flexural and bond performance by sectional area and geometry change through bond and flexural test of a structural synthetic fiber. Six deformed structural synthetic fibers were investigated and pullout and flexural test was conducted. Included parameters is three different geometries of fiber and two of fiber sectional area. The test result shows that the cycles and amplitude of structural synthetic fiber increased, pullout load and pullout fracture energy decreased and flexural strength increased, if sectional area is same. The sectional area increased, pullout load and pullout fracture energy increased and flexural strength decreased, if cycles and amplitude of structural synthetic fiber is same. Based on test results, structural performance of the concrete could know that is influence by pullout performance of fiber as well as various factor (fiber number, material properties etc).