• 제목/요약/키워드: Pullout load

Search Result 134, Processing Time 0.026 seconds

Bond Performance of Recycled PET Bottle Fiber Reinforced Concrete (폐 PET병을 이용한 콘크리트 보강 섬유의 부착특성)

  • Won, Jong-Pil;Park, Chan-Gi;Lee, Su-Jin;Kim, Jung-Hoon;Kim, Hwang-Hee;Lee, Jae-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.373-376
    • /
    • 2006
  • The purpose of this study was manufactured and evaluated the bond performance of recycled polyethylene terephthalate(PET) bottle fiber reinforced concrete. Four deformed recycled PET bottle fibers were manufactured and pullout test was conducted in accordance with the JCI-SF 8. Test parameters included four different type of fiber geometry and two types of mortar specimens. According to bond test results, it was found that embossing type recycled PET bottle fiber was significant improving the pullout load and interface toughness.

  • PDF

Prediction of load transfer depth for cost-effective design of ground anchors using FBG sensors embedded tendon and numerical analysis

  • Do, Tan Manh;Kim, Young-Sang
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.737-755
    • /
    • 2016
  • The load transfer depth of a ground anchor is the minimum length required to transfer the initial prestressing to the grout column through the bonded part. A thorough understanding of the mechanism of load transfer as well as accurate prediction of the load transfer depth are essential for designing an anchorage that has an adequate factor of safety and satisfies implicit economic criteria. In the current research, experimental and numerical studies were conducted to investigate the load transfer mechanism of ground anchors based on a series of laboratory and field load tests. Optical FBG sensors embedded in the central king cable of a seven-wire strand were successfully employed to monitor the changes in tensile force and its distribution along the tendons. Moreover, results from laboratory and in-situ pullout tests were compared with those from equivalent case studies simulated using the finite difference method in the FLAC 3D program. All the results obtained from the two proposed methods were remarkably consistent with respect to the load increments. They were similar not only in trend but also in magnitude and showed more consistency at higher pullout loading stages, especially the final loading stage. Furthermore, the estimated load transfer depth demonstrated a pronounced dependency on the surrounding ground condition, being shorter in hard ground conditions and longer in weaker ones. Finally, considering the safety factor and cost-effective design, the required bonded length of a ground anchor was formulated in terms of the load transfer depth.

A Study on Pullout Stability according to Abutment Shape of True Mechanicaaly Stabilized Earth Wall Abutment (순수형 보강토교대의 교대 형상에 따른 인발 안정성 검토)

  • Shin, Keun-Sik;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.594-601
    • /
    • 2019
  • A true MSEW abutment is an abutment type that directly supports the load of a superstructure. Metal strips, which are in-extensile reinforcements, should be used to minimize abutment deformation. A study to derive the application conditions of a True MSEW abutment was carried out by Zevogolis(2007). As a result, the pullout factor of safety of the uppermost reinforcement was estimated to be the smallest. Therefore, the pullout factor of safety of the uppermost reinforcement is the most important design factor. Parameter analysis was conducted with the abutment length, abutment heel, and abutment height as variables. The pullout factor of safety increased with increasing abutment length and abutment heel length. This is because the contact area increases and the superstructure is dispersed as the abutment length and abutment heel length increase. The pullout factor of safety converges at an abutment length of 1.2m and an abutment heel length of 0.9m. This is because the effective length of the reinforcement is reduced due to the increase in contact area. On the other hand, the extension of the superstructure will increase if the abutment length and abutment heel length are increased excessively. In addition, earth-volume is increased if the abutment height increases excessively. This acts as an upper load on the MSE wall. Therefore, it needs to be examined carefully.

Bond Properties of Nonpolar Macro Synthetic Fiber in Cement Mortar with Maleic Anhydride Grafted Polypropylene Powder (무수말레인산이 그라프트된 폴리프로필렌 분말 첨가에 따른 시멘트 모르타르와 무극성 마크로 합성섬유의 부착 특성)

  • Lee, Jin-Hyung;Park, Chan-Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.137-143
    • /
    • 2011
  • This study evaluated the effects of maleic anhydride grafted polypropylene powder (mPP) contents on the bond properties of cement mortar and nonpolar macro synthetic fibers (macro synthetic fiber). Dog-bone bond tests were performed to evaluate the bond performance of macro synthetic fiber in cement mortar with varying amounts of mPP (0%, 5%, 10%, 15%, 20%, 25%, 30% of cement weight). The bond properties (pullout behavior, pullout load and interface toughness) of macro synthetic fiber in cement mortar increased as the mPP contents was increased. The bond properties increased with the mPP contents. The microstructure of macro synthetic fiber surface was examined after the pullout test to analyze the frictional resistant force according to mPP contents during the pullout process of macro synthetic fiber in cement mortar. The scratched of macro synthetic fiber increased with the mPP contents.

Numerical Analysis for the Pullout Behavior and Failure Mechanism of Ground Anchor (그라운드 앵커의 인발거동 및 파괴메카니즘에 대한 수치해석)

  • Park, Byung-Soo;Shim, Do-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.69-76
    • /
    • 2010
  • This study is an numerical study of predicting the behavior of anchor embedded in weathered rocks, subjected to uplift loads, about ultimate pullout capacity and the failure mechanism. Factors influencing the behavior of anchors were investigated by reviewing the data about in-situ anchor tests performing numerical modelling with changing the bondage length of anchor, diameter of anchor body and diameter of tendon, and by correlations between those factors were evaluated to apply them to predict the behavior of anchors. As results of numerical analysis, a linear relationship between bondage length, diameter of anchor body and diameter of tendon with ultimate pullout capacity was obtained on the one hand, from the result of numerical analysis changing the Young's modulus of weathered rock, this parameter was found to influence to load-displacement and ultimate pullout capacity within the range of 10%, which was not so significant to affect.

Analytical Parametric Study on Pullout Capacity of Embedded Suction Anchors (매입된 석션앵커의 인발력에 대한 분석적 매개변수의 연구)

  • Boonyong, Sorrawas;Park, Ki Chul;Kim, In Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.182-189
    • /
    • 2015
  • The Embedded Suction Anchor (ESA) is a type of permanent offshore foundation that is installed by a suction pile. To increase the loading capacity against pullout, three wings (vertical flanges) are attached along the circumference at 120 degrees apart. Analytical parametric study using the proposed analytical solution method has been conducted to identify the effects of several parameters that are thought to influence the behavior of ESAs. The analysis results show that the pullout capacity increases as the anchor depth and the soil strength increase, and decreases as the load inclination angle increases. The anchor having square projectional area and being pulled horizontally at the middle of its length provides the highest pullout capacity.

Analysis of Load Capacity and Deformation Behavior of Suction Pile Installed in Sand (모래지반에 근입된 석션파일의 인발저항력 및 변위거동 분석)

  • Kim, You-Seok;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.27-37
    • /
    • 2011
  • A series of centrifuge model tests to investigate the suction pile pullout loading capacity in sand have been performed. The main parameters that affect the pullout loading capacity of a suction pile include the mooring line inclination angle and the padeye position of the suction pile. With respect to the padeye position, the maximum pullout loading capacity is obtained when the padeye position is near 75% of the pile length from the top. The direction of the pile rotation changes when the padeye position reaches somewhere near 50~75% for all mooring line inclination angles. The translation displacement of suction pile to develop the time of maximum pullout loading capacity decreased as the mooring line inclination angle increased. In addition, the vertical displacements of the center of a suction piles for all cases appeared to develop toward the ground surface.

Pullout Characteristics of End Fixed Nails (양단정착형 쏘일네일링의 인발특성)

  • Lee, Bongjik;Kim, Josoon;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.5-11
    • /
    • 2007
  • In this study, several pullout tests were carried out under various field conditions to evaluate the pullout force of the end fixed nails. Pullout resistance force, displacement and friction force between the grouting and nail were measured in end fixed nails installed in soft rock, weathered rock and weathered soil. Furthermore, the field test were also carried out under the same condition using the conventional type nails. Based on the test results, it is concluded that the end fixed nails showed larger ultimate resistance force compared with conventional types nails, approximately two times in weathered soil and 1.6 times of weathered rock, respectively. The skin friction is also increased in end fixed type about 1.8~3.0 times. Finally, it is concluded in the base of the force transfer properties that using the end fixed nails could decrease the displacement and show a uniform resistance in entire length of nails.

  • PDF

Expansion Ratio and Ultimate Load of Pulse-Discharge Bulbed Anchors (펄스방전 그라운드 앵커의 확공특성 및 극한인발력에 관한 연구)

  • Kim, Nak-Kyung;Kim, Sung-Kyu;Joo, Yong-Sun;Seo, Hyo-Kyun;Kim, Sun-Ju
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.5-10
    • /
    • 2009
  • The ground anchor is not usually used in soft clay and loose sand, because the pullout resistance of anchors can not be guaranteed. However, there is a method to increase the capacity of anchors using electric discharge geotechnical technologies, which are also known as pulse discharge and electric-spark technologies. The pulse-discharge anchor has a bulbed (or underreamed) bond length that is expanded by high voltage electrokinetic pulse energy. 24 anchors were installed in the weathered soil and sandy clay at the Geotechnical Experimentation Site at Sungkyunkwan University in Suwon, Korea. In this study, in order to define a relation between expansion rate of the anchor diameter and ultimate load, anchor load tests were carried out in accordance with testing procedures by AASHTO (AASHTO 1990) and FHWA (Weatheb 1998). And then several anchors were exhumed to measure the diameter of the pulse discharge anchors.

Fracture Behaviors of Headed Bars with Different Plate Types (플레이트 형상에 따른 Headed Bars의 파괴거동에 관한 연구)

  • 박현규;윤영수;류영섭;이만섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.935-940
    • /
    • 2002
  • This paper presents the failure mode on Headed Bars and prediction of tensile capacity, which is governed by concrete cone failure. 17 different plate types, three different concrete strengths and three different welding types of specimens were simulated. Static tensile load was applied Headed Bars were manufactured in different areas, and their shape and thickness are based on ASTM 970-98. Calculation of embedment length in concrete is conducted based on CSA 23.3-94, and static tensile load was applied. Tested pullout capacities were compared to the values determined using current design methods such as ACI-349 and CCD method.

  • PDF