• Title/Summary/Keyword: Pullout Resistance

Search Result 125, Processing Time 0.026 seconds

Pullout Resistance Increase in Soil-Nailing with Pressurized Grouting: Verification of Theoretical Solution (압력식 쏘일네일링의 인발저항력 증가: 이론적 검증)

  • Seo, Hyung-Joon;Park, Sung-Won;Jeong, Kyeong-Han;Choi, Hang-Seok;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.419-433
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of residual stress; and the increase of coefficient of pullout friction. From the laboratory tests, it was found that residual stress in borehole increases by pressurized grouting and dilatancy angle could be estimated by cavity expansion theory using the measured wall displacements. From the field test results, the pullout resistance of soil-nailing with pressurized grouting was found to be 10% larger than that of soil-nailing with gravitational grouting, mainly caused by mean normal stress increase and dilatancy effect. So, the pullout resistance could be estimated by considering these two effects. The radial displacement increases with dilatancy angle increase and the dilatancy angle decreases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the cavity expansion theory.

  • PDF

Pullout resistance of concrete anchor block embedded in cohesionless soil

  • Khan, Abdul J.;Mostofa, Golam;Jadid, Rowshon
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.675-688
    • /
    • 2017
  • The anchor block is a specially designed concrete member intended to withstand pullout or thrust forces from backfill material of an internally stabilized anchored earth retaining wall by passive resistance of soil in front of the block. This study presents small-scale laboratory experimental works to investigate the pullout capacity of a concrete anchor block embedded in air dry sand and located at different distances from yielding boundary wall. The experimental setup consists of a large tank made of fiberglass sheets and steel framing system. A series of tests was carried out in the tank to investigate the load-displacement behavior of anchor block. Experimental results are then compared with the theoretical approaches suggested by different researchers and codes. The appropriate placement of an anchor block and the passive resistance coefficient, which is multiplied by the passive resistance in front of the anchor block to obtain the pullout capacity of the anchor, were also studied.

Horizontal pullout capacity of a group of two vertical plate anchors in clay

  • Bhattacharya, Paramita;Kumar, Jyant
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.299-312
    • /
    • 2013
  • The horizontal pullout capacity of a group of two vertical strip plate anchors, placed along the same vertical plane, in a fully cohesive soil has been computed by using the lower bound finite element limit analysis. The effect of spacing between the plate anchors on the magnitude of total group failure load ($P_{uT}$) has been evaluated. An increase of soil cohesion with depth has also been incorporated in the analysis. For a weightless medium, the total pullout resistance of the group becomes maximum corresponding to a certain optimum spacing between the anchor plates which has been found to vary generally between 0.5B and B; where B is the width of the anchor plate. As compared to a single plate anchor, the increase in the pullout resistance for a group of two anchors becomes greater at a higher embedment ratio. The effect of soil unit weight has also been analyzed. It is noted that the interference effect on the pullout resistance increases further with an increase in the unit weight of soil mass.

Anchorage mechanism and pullout resistance of rock bolt in water-bearing rocks

  • Kim, Ho-Jong;Kim, Kang-Hyun;Kim, Hong-Moon;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.841-849
    • /
    • 2018
  • The purpose of a rock bolt is to improve the mechanical performance of a jointed-rock mass. The performance of a rock bolt is generally evaluated by conducting a field pullout test, as the analytical or numerical evaluation of the rock bolt behavior still remains difficult. In this study, wide range of field test was performed to investigate the pullout resistance of rock bolts considering influencing factors such as the rock type, water bearing conditions, rock bolt type and length. The test results showed that the fully grouted rock bolt (FGR) in water-bearing rocks can be inadequate to provide the required pullout resistance, meanwhile the inflated steel tube rock bolt (ISR) satisfied required pullout resistance, even immediately after installation in water-bearing conditions. The ISR was particularly effective when the water inflow into a drill hole is greater than 1.0 l/min. The effect of the rock bolt failure on the tunnel stability was investigated through numerical analysis. The results show that the contribution of the rock bolt to the overall stability of the tunnel was not significant. However, it is found that the rock bolt can effectively reinforce the jointed-rock mass and reduce the possibility of local collapses of rocks, thus the importance of the rock bolt should not be overlooked, regardless of the overall stability.

Pullout Resistance Characteristics of the Wedge-shaped Ground Anchor (쐐기형 그라운드앵커의 인발 거동 특성)

  • Kim, Jung-Moo;Chung, Won-Yong;Yoon, Yong-Soo;Chung, Min-Kyu;Jang, Soon-Ho;Lee, Yong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1060-1064
    • /
    • 2010
  • Ground anchors are mostly used to improve the resistance capacity of retaining walls. The end of the anchor is connected to retaining wall through tendons and the forces in tendons are transferred to ground. In this study, we plan that the new anchor system increases the tension force in tendons and improves the pullout resistance characteristics of the system. In order to increase the pullout resistance capacity of existing anchor system, the new anchor system is made by attaching four steel sticks to the tip of anchor end. So the field test results showed that the pullout resistance capacity of the wedge-shaped ground anchor was acceptable to elastic displacement range.

  • PDF

Pullout Parameter According to the Length of Spreading of Extensible Geogrid Reinforcement (신장성 지오그리드 보강재의 포설길이에 따른 인발정수)

  • Park, Jong-Beom;Ju, Jae-Woo;Na, Hyun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.241-249
    • /
    • 2017
  • In a reinforced soil structure, the interaction between soil and an reinforcement occurs due to the frictional resistance on the contact surface between them or the pullout resistance of the reinforcement. Generally, a pullout test is conducted to measure pullout parameters of extensible geogrids. The factors affecting the pullout parameters in a pullout test include a density of backfill, shape of reinforcements, overburden pressure, length of spread reinforcements, and so on. The purpose of this study is to suggest a length of the spreading of an extensible reinforcement that can be used in estimating suitable pullout parameters of a pullout test. To this end, a pullout test was carried out. For the test, the length of spreading of an extensible reinforcement was set as 32 cm, 52 cm, 72 cm, and 100 cm, and effects of the lengths on pullout parameters were analyzed. As a result of the pullout test, it was confirmed that the frictional resistance between the soil and the reinforcement increases with the increase of the length of the reinforcement.

An Experimental Study on Pullout Behavior Characteristics of the Steel Strip Reinforcement Bolted with Braced Angles (버팀재 볼트 접합형 강재스트립 보강재의 인발거동특성에 관한 실험적 고찰)

  • Kim, Hong-Taek;Bang, Yoon-Kyung;Park, Si-Sam;Kim, Hyun-Jo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.67-75
    • /
    • 2003
  • In this study, the steel strip reinforcement bolted with braced angles expected to mobilize skin friction resistance as well as bearing resistance is proposed. Laboratory pullout tests are conducted to investigate the characteristics of pullout behavior. From the test results, friction effects between soil and reinforcement are evaluated with the width of reinforcement, magnitude of surcharge, and existence of bearing resistance member. Further to analyze interference effects for bearing resistance member, pullout tests are also carried by varing the number, the location, and the spacing of braced angles. Based on the test results, pullout resistance factor is evaluated under the consideration of location of braced angles and the degree of interference for spacing ratio.

  • PDF

Prediction of Pullout Behavior Characteristics on the Geogrid (지오그리드 보강재의 인발거동특성 예측기법)

  • 김홍택;박사원;김경모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.1-10
    • /
    • 1999
  • In the present study, laboratory pull-out tests with various geogrid shapes are carried out to investigate behavior characteristics of the geogrid. Also, an interface pullout formula is proposed for predicting and interpreting pullout test result. The analytical model is based on the assumption that the reinforcement is linear elastic during the pullout test. And then, maximum pullout force, frictional resistance and active length for each of the grid density ratio are predicted based on the interface pullout formula. The predicted results were compared with those of pullout tests, and showed in general good agreements.

  • PDF

Estimation of Ultimate Pullout Resistance of Soil-Nailing Using Nonlinear (비선형회귀분석을 이용한 가압식 쏘일네일링의 극한인발저항력 판정)

  • Park, Hyun-Gue;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.65-75
    • /
    • 2016
  • In this study, we constructed a database by collecting field pullout test data of the soil nailing using pressurized grouting, and suggested a method to estimate the ultimate pullout resistance using nonlinear regression analysis to overcome the problems of ultimate pullout resistance estimation using graphical methods. The load-displacement curve estimated by nonlinear regression showed a very high correlation with the field pullout test data. Estimated ultimate pullout load by nonlinear regression method was average 29% higher than estimated ultimate pullout load using previous graphical method. A sigmoidal growth model was found to be the best-fitting nonlinear regression model against rapid pullout failure. Further, an asymptotic regression model was found to be the best fit against progressive nail pullout. The unit ultimate skin friction suggested in this research reflected in the domestic geotechnical characteristics and the specifications of the pressurized grouting method. This research is expected to contribute towards establishing an independent design standard for the soil nailing by providing solutions to the problems that occur when using design charts based on foreign research.

Pullout Behavior of Typical friction Anchors and Development of Design Method (앵커 형식별 인발거동과 설계법 개발)

  • 송일준;김가야;홍석우
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.43-51
    • /
    • 2003
  • The resistance mechanism of anchor changes according to the types of anchor. Friction anchors are classified into tension and compression types. In this study, the characteristics and mechanism of pullout are analysed, and the design method of anchor and computer program for design are developed through compression test results of anchor body grout. The characteristics of compression anchor, compared with tension anchor, are summarized mainly as follows: (1) The effect of progressive failure of compression anchor body are much smaller than those of tension anchor during pullout of anchor: (2) The skin friction resistance is increased by Possion effect of grout (anchor body) during pullout of compression anchor.